Please wait a minute...
材料工程  2019, Vol. 47 Issue (2): 26-33    DOI: 10.11868/j.issn.1001-4381.2017.001203
  综述 本期目录 | 过刊浏览 | 高级检索 |
马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚
武汉工程大学 材料科学与工程学院, 武汉 430205
Progress of compatibilization methods in polymer blends
MA Peng-fei, WANG Xin, LI Dong-hui, YOU Feng, JIANG Xue-liang, YAO Chu
School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
全文: PDF(2535 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 不混溶共混物的增容是迄今为止将相容性较差的多相聚合物共混物转化为高性能合金的最通用和最有效的方法。本文主要简述了增容的概念和其必要性以及聚合物在通过共混改性时所采用的各种增容手段:添加嵌段和接枝共聚物;添加反应性聚合物;添加低分子量化合物;添加功能纳米粒子等,并综述了不同增容方法的发展现状及增容作用对共混物的相形貌和最终性能(力学性能、热性能、电学性能等)的影响,并最后提出纳米粒子增容将成为共混物增容领域的热门方法,这种方法不仅起能到增容作用,还可以增加机械强度并且有可能给共混物带来新的性能。
E-mail Alert
关键词 增容剂聚合物共混共聚物纳米粒子反应增容    
Abstract:Compatibilization of immiscible polymer blends is by far the most general and efficient strategy to convert multiphase polymer blends with poor miscibility into high performance polymer alloys. The concept and necessity of compatibilization of immiscible polymer blends were analyzed. Various compatibilization methods were introduced to improve the miscibility of polymer blends, including the addition of block or graft copolymers, reactive polymers, low molecular weight chemical compound and functionalized nanoparticles, etc. In addition, the development of compatibilization methods was reviewed and the effect of compatibilization on the phase morphology and final properties of the blends was discussed, such as mechanical properties, thermal properties, electrical properties, etc. Finally, it was proposed that nanoparticle compatibilization will become a popular method in the field of blend compatibilization. This method not only can increase the capacity, but also increase the mechanical strength and possibly bring new properties to the blend.
Key wordscompatibilizer    polymer blend    copolymer    nanoparticles    reactive compatibilization
收稿日期: 2017-09-26      出版日期: 2019-02-21
中图分类号:  TB324  
通讯作者: 游峰(1986-),男,讲师,博士,主要从事纳米无机填料填充高分子复合材料的界面工程设计与形态,联系地址:湖北武汉东湖新技术开发区流芳大道特1号武汉工程大学材料科学与工程学院(430205),     E-mail:
马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
MA Peng-fei, WANG Xin, LI Dong-hui, YOU Feng, JIANG Xue-liang, YAO Chu. Progress of compatibilization methods in polymer blends. Journal of Materials Engineering, 2019, 47(2): 26-33.
链接本文:      或
[1] PAUL D R, BARLOW J W. Polymer blends[J].Polymer Reviews, 1980, 18(1):109-168.
[2] IMRE B, PUKÁNSZKY B. Compatibilization in bio-based and biodegradable polymer blends[J].European Polymer Journal, 2013, 49(6):1215-1233.
[3] GAO C, ZHANG S, LI X, et al. Synthesis of poly(ether ether ketone)-block-polyimide copolymer and its compatibilization for poly(ether ether ketone)/thermoplastic polyimide blends[J].Polymer, 2013, 55(1):119-125.
[4] CHANG K H, ROBERTSON M L, HILLMYER M A. Phase Inversion in polylactide/soybean oil blends compatibilized by poly(isoprene-b-lactide) block copolymers[J].ACS Appl Mater Interfaces, 2009, 1(10):2390-2399.
[5] EAGAN J M, XU J, GIROLAMO R D, et al. Combining polyethylene and polypropylene:enhanced performance with PE/IPP multiblock polymers[J].Science, 2017, 355(6327):814-816.
[6] ULCNIK-KRUMP M. Study of morphology influence on rheological properties of compatibilized TPU/SAN blends[J].Journal of Applied Polymer Science, 2006, 100(3):2303-2316.
[7] ZHANG C L, FENG L F, GU X P, et al. Blend composition dependence of the compatibilizing efficiency of graft copolymers for immiscible polymer blends[J].Polymer Engineering & Science, 2010, 50(11):2243-2251.
[8] LYATSKAYA Y, JACOBSON S H, BALAZS A C. Effect of composition on the compatibilizing activity of comb copolymers[J].Macromolecules, 1996, 29(3):1059-1061.
[9] KVIST L, BERTILSSON H, MEULLER P. Poly(styrene-g-ethylene oxide) copolymers as interfacial agents in immiscible polymer blends[J].Polymer Engineering & Science, 1998, 38(8):1303-1312.
[10] ZHANG N, WANG Q, REN J, et al. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co -terephthalate) blend with glycidyl methacrylate as reactive processing agent[J].Journal of Materials Science, 2009, 44(1):250-256.
[11] CHEN R, JIANG X, YOU F, et al. Optimizing the morphology, mechanical and crystal properties of in-situ polypropylene/polystyrene blends by reactive extrusion[J].Fibers & Polymers, 2016, 17(10):1550-1557.
[12] PARAMESWARANPILLAI J, JOSEPH G, CHELLAPPAN R V, et al. The Effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends[J].Journal of Polymer Research, 2015, 22(2):1-11.
[13] ZHU Y L, LIANG C S, BO Y, et al. Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate[J].Journal of Polymer Research, 2015, 22(3):1-12.
[14] WU M, WU Z, WANG K, et al. Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend[J].Polymer, 2014, 55(24):6409-6417.
[15] ZHANG Y, LI Y T, ZHAO S F, et al. Compatibility effect of radiation-grafting-functionalized styrene-butadiene-styrene on polyamide 6/styrene-butadiene-styrene blends[J].Journal of Applied Polymer Science, 2008, 108(2):1029-1036.
[16] ZAMAN H U, SONG J C, PARK L S, et al. Poly(lactic acid) blends with desired end-use properties by addition of thermoplastic polyester elastomer and MDI[J].Polymer Bulletin, 2011, 67(1):187-198.
[17] MA P, CAI X, ZHANG Y, et al. In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator[J].Polymer Degradation & Stability, 2014, 102(2):145-151.
[18] LI P, HUANG Y, KONG M, et al. Fractionated crystallization and morphology of PP/PS blends in the presence of silica nanoparticles with different surface chemistries[J].Colloid and Polymer Science, 2013, 291(7):1693-1704.
[19] WANG H, FU Z, ZHAO X, et al. Reactive nanoparticles compatibilized immiscible polymer blends:synthesis of reactive SiO2 with long pmma chains and the in-situ formation of janus nanoparticles anchored exclusively at the interface[J]. ACS Applied Materials & Interfaces,2017, 9(16):14358-14370.
[20] FERN NDEZROSAS E, VILAR G, JANER G, et al. Influence of nanomaterials compatibilization strategies in polyamide nanocomposite properties and nanomaterials release during the use phase[J].Environmental Science & Technology, 2016, 50(5):2584.
[21] LI W, KARGER-KOCSIS J, SCHLARB A K. Dispersion of TiO2 particles in PET/PP/TiO2 and PET/PP/PP -g-MA/TiO2 composites prepared with different blending procedures[J].Macromolecular Materials & Engineering, 2009, 294(9):582-589.
[22] PANDA B P, MOHANTY S, NAYAK S K, et al. Fracture Study of modified TiO2 reinforced PP/EPDM composite:mechanical behavior and effect of compatibilization[J].International Journal of Plastics Technology, 2012, 16(1):89-100.
[23] SUN N, WANG T, LIU C. Preparation, characterization and photocatalytic study of wood-flour/β -cyclodextrin/TiO2 hybrid composite[J].Wood Science & Technology, 2016, 50(6):1-18.
[24] KOOSHKI R M, GHASEMI I, KARRABI M, et al. Nanocomposites based on polycarbonate/poly (butylene terephthalate) blends effects of distribution and type of nanoclay on morphological behavior[J].Journal of Vinyl & Additive Technology, 2013, 19(3):203-212.
[25] MOMEN O, MEHRABI-MAZIDI M, JAHANGIRI N. Isotactic polypropylene (PP) modified by abs and CaCO3 nanoparticles:effect of composition and compatibilization on the phase morphology, mechanical properties and fracture behavior[J].Polymer Bulletin, 2015, 72(11):2757-2782.
[26] SHOKRIAN M D, SHELESHNEZHAD K H, SOUDMAND B. Numerical simulation of hybrid nanocomposite containing CaCO3 and short glass fiber subjected to tensile loading[J]. Mechanics of Advanced Composite Structures,2017, 4(2):117-125
[27] POUR S A H, POURABBAS B, HOSSEINI M S. Electrical and rheological properties of PMMA/LDPE blends filled with carbon black[J].Materials Chemistry & Physics, 2014, 143(2):830-837.
[28] MATHEW T, DATTA R N, DIERKES W K, et al. Plasma polymerization surface modification of carbon black and its effect in elastomers[J].Macromolecular Materials & Engineering, 2011, 296(1):42-52.
[29] XU C, TAN Y, SONG Y, et al. Influences of compatibilization and compounding process on electrical conduction and thermal stabilities of carbon black-filled immiscible polypropylene/polystyrene blends[J].Polymer International, 2013, 62(2):238-245.
[30] BAUDOUIN A C, BAILLY C, DEVAUX J. Interface localization of carbon nanotubes in blends of two copolymers[J].Polymer Degradation & Stability, 2010, 95(3):389-398.
[31] BAUDOUIN A C, DEVAUX J, BAILLY C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer[J].Polymer, 2010, 51(6):1341-1354.
[32] WU D, LIN D, ZHANG J, et al. Selective localization of nanofillers:effect on morphology and crystallization of PLA/PCL blends[J].Macromolecular Chemistry & Physics, 2011, 212(6):613-626.
[33] TONG J, HUANG H X, WU M. Promoting compatibilization effect of graphene oxide on immiscible PS/PVDF blend via water-assisted mixing extrusion[J].Composites Science & Technology, 2017, 149(8):286-293.
[34] YANG J, FENG C, DAI J, et al. Compatibilization of immiscible nylon 6/poly(vinylidene fluoride) blends using graphene oxides[J].Polymer International, 2012, 62(7):1085-1093.
[35] YOU F, WANG D, CAO J, et al. In situ thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending[J].Polymer International, 2013, 63(1):93-99.
[36] LI W, KARGER-KOCSIS J, THOMANN R. Compatibilization effect of TiO2 nanoparticles on the phase structure of PET/PP/TiO2 nanocomposites[J].Journal of Polymer Science Part B:Polymer Physics, 2009, 47(16):1616-1624.
[37] ELIAS L, FENOUILLOT F, MAJESTE J C, et al. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles[J].Polymer, 2007, 48(20):6029-6040.
[38] HEMMATI F, GARMABI H, MODARRESS H. Compatibilization mechanisms of nanoclays with different surface modifiers in ucst blends:opposing effects on phase miscibility[J].Polymer, 2014, 55(25):6623-6633.
[39] WANG S S, PANG S J, PAN L S, et al. Compatibilization of poly(lactic acid)/ethylene-propylene-diene rubber blends by using organic montmorillonite as a compatibilizer[J].Journal of Applied Polymer Science, 2016, 133(46):44192.
[40] KHARE R A, BHATTACHARYYA A R, KULKARNI A R, et al. Influence of multiwall carbon nanotubes on morphology and electrical conductivity of PP/ABS blends[J].Journal of Polymer Science Part B:Polymer Physics,2008,46(21):2286-2295.
[41] BAUDOUIN A C, AUHL D, TAO F, et al. Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement[J].Polymer, 2011, 52(1):149-156.
[42] BHARATI A, CARDINAELS R, SEO J W, et al. Enhancing the conductivity of carbon nanotube filled blends by tuning their phase separated morphology with a copolymer[J].Polymer, 2015, 79:271-282.
[43] YE S, CAO Y, FENG J, et al. Temperature-dependent compatibilizing effect of graphene oxide as a compatibilizer for immiscible polymer blends[J].RSC Advances, 2013, 3(21):7987-7995.
[44] CAO Y, ZHANG J, FENG J, et al. Compatibilization of immiscible polymer blends using graphene oxide sheets[J].ACS Nano, 2011, 5(7):5920-5927.
[45] YANG J H, FENG C X, DAI J, et al. Compatibilization of immiscible nylon 6/poly(vinylidene fluoride) blends using graphene oxides[J].Polymer International, 2013, 62(7):1085-1093.
[46] WANG Y, LIU X, ZHANG Q, et al. Synthesis of a novel reactive compatibilizer with large surface area and the application in monomer casting nylon/polyethylene-octene elastomer blends[J].Journal of Materials Science, 2016, 51(21):9589-9601.
[47] 邢妍,张勇,张红梅. 氧化石墨烯增容尼龙6/聚苯乙烯共混体系的研究[J].高分子学报, 2015(6):706-712. XING Y,ZHANG Y,ZHANG H M.Compatibilizing effect of graphene oxide on polyamide 6/polystyrene blends[J].Acta Polymerica Sinica,2015(6):706-712.
[48] BALOGUN Y A, BUCHANAN R C. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCS)[J].Composites Science and Technology, 2010, 70(6):892-900.
[49] PARK S, HE S Y, WANG J N, et al. Graphene-polyethylene nanocomposites:effect of graphene functionalization[J].Polymer, 2016, 104:1-9.
[50] YU A P, RAMESH P, SUN X B, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J].Advanced Materials, 2008, 20(24):4740-4744.
[51] WANG S R, TAMBRAPARNI M, QIU J J, et al. Thermal expansion of graphene composites[J].Macromolecules, 2009, 42(14):5251-5255.
[1] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[2] 王子明, 王东星, 陆姗姗, 王鑫, 董星龙. 镍基Ni-Ag复合纳米粒子直流电弧等离子体法制备及其烧结电学性能[J]. 材料工程, 2020, 48(3): 92-97.
[3] 毕明刚, 张纪梅, 郝帅帅, 谢博尧. 硫醇保护的银簇制备及其荧光检测应用的进展[J]. 材料工程, 2020, 48(2): 11-21.
[4] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[5] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[6] 韩栋, 张宝林, 苏礼超, 韩贵华, 汪晟. 不同粒径超顺磁性氧化铁纳米粒子的合成及其在交变磁场中的磁热效应[J]. 材料工程, 2019, 47(4): 84-90.
[7] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[8] 梁智鹏, 王一雍, 金辉, 周新宇, 刘香琳. Ni-Co/纳米ZrO2复合材料的电化学行为及摩擦磨损性能[J]. 材料工程, 2018, 46(5): 112-119.
[9] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[10] 毛龙, 刘跃军, 姚进, 吴慧青, 白永康. 原位聚合改性纳米层状黏土/脂肪族聚酯嵌段共聚物复合材料的制备与性能[J]. 材料工程, 2018, 46(12): 70-77.
[11] 刘晶如, 夏阳阳, 高力群, 俞强. HIPS/HDPE共混物的动态黏弹行为与相形态[J]. 材料工程, 2017, 45(5): 52-58.
[12] 杜军, 宋永明, 张志军, 房轶群, 王伟宏, 王清文. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45(12): 30-36.
[13] 马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
[14] 潘健, 肖长发, 赵健, 黄庆林, 任倩. 单轴取向乙烯-三氟氯乙烯共聚物纤维结晶结构与性能表征[J]. 材料工程, 2016, 44(7): 73-77.
[15] 何伟艳, 张赫, 刘进荣. 溶致液晶模板法制备形貌可控的纳米氧化锆[J]. 材料工程, 2016, 44(6): 76-83.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持