Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 97-105    DOI: 10.11868/j.issn.1001-4381.2017.001220
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究
陈跃良, 王安东, 卞贵学, 张勇
海军航空大学青岛校区, 山东 青岛 266041
Electrochemical study on performance of CF8611/AC531 composite and galvanic corrosion coupled with 7B04 aluminum alloy
CHEN Yue-liang, WANG An-dong, BIAN Gui-xue, ZHANG Yong
Naval Aviation University Qingdao Campus, Qingdao 266041, Shandong, China
全文: PDF(18020 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 借助电化学工作站、扫描电镜和能谱仪等设备,测量了CF8611/AC531复合材料的正面(FS)试件和侧面(SS)试件及7B04-T74铝合金在3.5%(质量分数,下同)NaCl或3.5% NaCl+12.5% Cu2SO4电解液中的极化曲线及电偶腐蚀参量,并观测了微观形貌;基于电化学理论、稳态腐蚀场和参数化扫描,建立了复合材料磨损状态下二者的电偶腐蚀动态模型。结果表明:该型复合材料性能稳定,但原始表面存在碳纤维裸露缺陷,缺陷位置常在碳纤维束重叠区,密度均值4.3个/mm2,面积均值0.0184mm2/个;阴极反应速率与缺陷面积密切相关,据此划分了活性阴极区和惰性阴极区;电偶腐蚀中,铝合金的主要腐蚀形式为点蚀,未见复合材料失效;电偶腐蚀有限元模型有效、可用,总电偶电流Ig与缺陷面积S正线性相关;当SFSSSS约为5.53:1时,二者对7B04-T74铝合金的电偶效应相同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈跃良
王安东
卞贵学
张勇
关键词 复合材料铝合金性能电偶腐蚀电化学    
Abstract:By means of the electrochemical workstation, scanning electron microscope, energy spectrometer and so on, the polarization curves and galvanic corrosion parameters of the front surface (FS) specimen and side surface (SS) specimen of CF8611/AC531 composite and the 7B04-T74 aluminum alloy in the electrolyte of 3.5% (mass fraction, the same below) NaCl or 3.5%NaCl+12.5% Cu2SO4 were measured, meanwhile the microstructure were observed. Based on the electrochemistry theory, steady corrosion field and parametric scanning technology, a dynamic model for galvanic corrosion under the wear status of composite was established. The results show that the performance of this composite is stable, but there are some carbon fibre exposed defects on the original surface. The defects are often located at the overlap area of carbon fibre bundles. There are 4.3 defects per square millimetre and the average area of each defect is 0.0184mm2; the cathodic reaction rate is closely related to the area of the defects and consequently its surface is divided into the active and the inert cathode region; in the galvanic corrosion the main corrosion form of the aluminum alloy is pitting and no failure is found in the composite. The galvanic corrosion model established here is valid and available. There is a positive linear correlation between the total galvanic current Ig and the defect area S; the galvanic effect of FS and SS on the aluminum alloy is the same when SFS:SSS is about 5.53:1.
Key wordscomposite    aluminum alloy    performance    galvanic corrosion    electrochemistry
收稿日期: 2017-09-28      出版日期: 2019-01-16
中图分类号:  V258+.3  
  V252.2  
通讯作者: 王安东(1990-),男,博士,主要研究方向为飞机结构强度、腐蚀与防护,联系地址:山东省青岛市李沧区四流中路二号研究生队(266041),E-mail:wad0532@sina.com     E-mail: wad0532@sina.com
引用本文:   
陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
CHEN Yue-liang, WANG An-dong, BIAN Gui-xue, ZHANG Yong. Electrochemical study on performance of CF8611/AC531 composite and galvanic corrosion coupled with 7B04 aluminum alloy. Journal of Materials Engineering, 2019, 47(1): 97-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001220      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/97
[1] ALIAS M N, BROWN R. Corrosion behavior of carbon fiber composites in the marine environment[J]. Corrosion Science, 1993, 35(4):395-402.
[2] IRELAND R, ARRONCHE L, LA SAPONARA V. Electrochemical investigation of galvanic corrosion between aluminum 7075 and multiscale glass fiber/epoxy composites[J]. Composites Part B:Engineering, 2012, 56(5):171-178.
[3] 邓华, 高军鹏, 包建文. 取向非连续碳纤维复合材料制备与性能[J]. 航空材料学报, 2018, 38(1):69-74. DENG H, GAO J P, BAO J W. Preparation and mechanical properties of aligned discontinuous carbon fiber composites[J]. Journal of Aeronautical Materials, 2018, 38(1):69-74.
[4] PAN J Q, LI P Y. Experimental study on galvanic corrosion of aluminum alloy and carbon/epoxy composite[J]. Aerospace Materials Technology, 1993, 33(5):19-24.
[5] LU F, ZHONG Q P, CAO C X. Galvanic corrosion and controlling of GECM and metals in atmospheric environment[J]. Materials Protection, 2002, 35(12):19-22.
[6] SRINIVASAN R, NELSON J A, HIHARA L H. Development of guidelines to attenuate galvanic corrosion between mechanically-coupled aluminum and carbon-fiber reinforced epoxy composites using insulation layers[J]. Journal of the Electrochemical Society, 2015, 162(10):545-554.
[7] SRINIVASAN R, HIHARA L H. Utilization of hydrophobic coatings on insulative skirts to attenuate galvanic corrosion between mechanically-fastened aluminum alloy and carbon-fiber reinforced polymer-matrix composites[J]. Electrochemistry Communications, 2016, 72(5):96-99.
[8] 陈龙. 碳纤维复合材料与金属电偶腐蚀规律及防护研究[D]. 哈尔滨:哈尔滨工业大学, 2007. CHEN L. The research of galvanic corrosion rule and protection between carbon fiber composite material and metal[D]. Harbin:Harbin Institute of Technology, 2007.
[9] HIHARA L H, LATANISION R M. Suppressing galvanic corrosion in graphite/aluminum metal-matrix composites[J]. Corrosion Science, 1993, 34(4):655-665.
[10] LI Z H, XIONG B Q, ZHANG Y A, et al. Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments[J]. Chinese Journal of Nonferrous Metals, 2008, 18(1):40-45.
[11] CHEN Y L, WANG Z F, BIAN G X, et al. Study on equivalent conversion of galvanic corrosion between dissimilar metals of airplane in NaCl solution with different concentrations[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):260-268.
[12] YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion in al alloys:effect of geometric factors[J]. Journal of the Electrochemical Society, 2017, 164(2):75-84.
[13] JIA J X, ATRENS A, SONG G, et al. Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution[J]. Materials and Corrosion, 2005, 56(7):468-474.
[14] JIA J X, SONG G, ATRENS A. Influence of geometry on galvanic corrosion of AZ91D coupled to steel[J]. Corrosion Science, 2006, 48(8):2133-2153.
[15] 王晨光, 陈跃良, 张勇,等. 表面涂层破损对7B04铝合金点蚀的影响及仿真研究[J]. 航空材料学报, 2016, 36(6):48-53. WANG C G, CHEN Y L, ZHANG Y, et al. Influence and simulation study of surface coating damage on pitting corrosion of 7B04 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36(6):48-53.
[16] 王晨光, 陈跃良, 张勇,等. 7B04铝合金在模拟海洋大气环境下的腐蚀行为[J]. 航空材料学报, 2017, 37(1):59-64. WANG C G, CHEN Y L, ZHANG Y, et al. Corrosion behavior of 7B04 aluminum alloy under simulated marine atmosphere environment[J]. Journal of Aeronautical Materials, 2017,37(1):59-64.
[17] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8):123-131. WANG X, LIN J P, WAN H L. Research progress in effect of aluminum surface properties on adhesively bonded performance[J]. Journal of Materials Engineering, 2017, 45(8):123-131.
[18] MANDEL M, KRÜGER L. Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbon-fiber reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process[J]. Corrosion Science, 2013, 73(21):172-180.
[19] WANG C G, CHEN Y L, ZHANG Y, et al. Simulation study on filiform corrosion of aircraft aluminum alloy/coating system[J]. Material Development and Application, 2017, 31(1):80-88.
[20] 刘铭, 李惠曲, 陈军洲,等. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45(9):129-135. LIU M, LI H Q, CHEN J Z, et al. Corrosion resistance of 7475-T7351 aluminum alloy plate for aviation[J]. Journal of Materials Engineering, 2017, 45(9):129-135.
[21] UDONATUS, GETHOMPSON, JAOMOTOYINBO, et al. Corrosion pathways in aluminium alloys[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1):55-62.
[22] MA Y, LI L B, GAO G X, et al. Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries[J]. Electrochimica Acta, 2016, 187(4):535-542.
[23] YANG S H B, BABU P, CHUA S F S, et al. Carbon dioxide hydrate kinetics in porous media with and without salts[J]. Applied Energy, 2016, 162(5):1131-1140.
[24] BALA H, DYMEK M. Determination of corrosion rate of porous, liquid permeable materials on the example of hydride powder composite[J]. Ochrona Przed Korozja, 2017, 6(4):79-83.
[1] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[5] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[6] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[7] 李立珺, 苗瑞霞, 张霞. 氧化锡纳米线的制备及其乙醇气体敏感性能[J]. 材料工程, 2019, 47(6): 82-87.
[8] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[9] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[10] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[11] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[12] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[13] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[14] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[15] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn