Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (4): 32-38    DOI: 10.11868/j.issn.1001-4381.2017.001234
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
静电纺丝聚芳醚砜酮纤维膜穿刺强度研究
龚文正1, 常保宁2, 阮诗伦2,3,*(), 申长雨2,3
1 大连理工大学 材料科学与工程学院, 辽宁 大连 116024
2 大连理工大学 工程力学系, 辽宁 大连 116024
3 工业装备结构分析国家重点实验室, 辽宁 大连 116024
Puncture strength research of electrospun PPESK fibrous membrane
Wen-zheng GONG1, Bao-ning CHANG2, Shi-lun RUAN2,3,*(), Chang-yu SHEN2,3
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, Liaoning, China
3 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024, Liaoning, China
全文: PDF(13548 KB)   HTML ( 14 )  
输出: BibTeX | EndNote (RIS)      
摘要 

静电纺丝纤维膜因为具有高孔隙率、大的比表面积和良好的电解液润湿性而被广泛地应用于锂离子电池隔膜的研究,但对于锂离子电池安全性能至关重要的隔膜穿刺强度的研究还比较匮乏。本工作采用静电纺丝技术制备得到PPESK纤维膜,并采用热处理提高纤维膜的力学性能,然后通过穿刺实验测得一系列不同厚度热处理PPESK纤维膜的穿刺强度,并建立起穿刺强度与纤维膜厚度之间的线性关系。通过对穿刺破坏区域的微观分析,探究热处理PPESK纤维膜穿刺破坏机理,结果表明:各向同性的热处理PPESK纤维膜穿刺过程是由纤维受挤压产生弯曲、变形和断裂造成的破坏,破坏区域呈近似圆形穿刺孔,而PP微孔膜的破坏区域则是由脆性断裂造成的长条形裂缝,相比之下热处理PPESK纤维膜的穿刺破坏过程更加缓和,可以降低锂枝晶刺穿隔膜带来的风险,但是热处理PPESK纤维膜的穿刺强度还有待增强。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚文正
常保宁
阮诗伦
申长雨
关键词 静电纺丝纤维膜穿刺强度聚芳醚砜酮    
Abstract

Electrospun fibrous membranes have been widely used for research of lithium-ion battery separators because of the high porosity, large specific surface area as well as excellent electrolyte wettability. However, little research has been focused on the puncture strength, which influences the safety of lithium-ion battery seriously. PPESK fibrous membranes with different thicknesses were fabricated by electrospinning technique, and the mechanical properties were improved by heat treatment, and the puncture strength of heat-treated PPESK membrane was tested using universal tensile testing machine and the linear relationship between the puncture strength of heat-treated PPESK fibrous membrane and the thickness was established. The further microscopic analysis of the puncture failure region was carried out to explore the puncture failure mechanism of heat-treated PPESK fibrous membranes. The result shows that the puncture process of isotropic heat-treated PPESK fibrous membrane is much tempered compared with PP microporous separator. The penetration of the heat-treated PPESK fibrous membranes was caused by the bend, deformation and fracture of PPESK fibers. The failure region of heat-treated PPESK fibrous membrane appears a circular hole, while the PP separator is long cracks. The puncture mechanism of heat-treated PPESK fibrous membrane is beneficial to prevent the destruction of lithium dendrites, but the puncture strength of heat-treated PPESK fibrous membrane remains to be enhanced.

Key wordselectrospinning    fibrous membrane    puncture strength    poly(phthalazinone ether sulfone ketone)
收稿日期: 2017-10-01      出版日期: 2019-04-19
中图分类号:  TQ326.5  
基金资助:国家自然科学基金重点项目(11432003);高等学校学科创新引智计划(B14013)
通讯作者: 阮诗伦     E-mail: ruansl@dlut.edu.cn
作者简介: 阮诗伦(1976-), 男, 副教授, 博士, 研究方向为纳米高分子复合材料的制备、力学行为及增强机理, 联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学工程力学系(116024), E-mail:ruansl@dlut.edu.cn
引用本文:   
龚文正, 常保宁, 阮诗伦, 申长雨. 静电纺丝聚芳醚砜酮纤维膜穿刺强度研究[J]. 材料工程, 2019, 47(4): 32-38.
Wen-zheng GONG, Bao-ning CHANG, Shi-lun RUAN, Chang-yu SHEN. Puncture strength research of electrospun PPESK fibrous membrane. Journal of Materials Engineering, 2019, 47(4): 32-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001234      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/32
Fig.1  静电纺丝原理示意图
Fig.2  穿刺实验夹具(a),(b)和穿刺针(c)
Fig.3  静电纺丝PPESK纤维膜热处理前(a)、后(b)和PP微孔膜(c)的扫描电镜图像
Fig.4  静电纺丝PPESK纤维膜热处理前后的应力-应变曲线
Fig.5  热处理PPESK纤维膜穿刺前后(a),(b)和PP微孔膜穿刺前后(c),(d)的实验图
Fig.6  几种不同厚度的热处理PPESK纤维膜和PP微孔膜穿刺力-位移曲线
Fig.7  热处理PPESK纤维膜穿刺强度随厚度的变化及其线性拟合
Fig.8  热处理PPESK纤维膜(a),(b)和PP微孔膜(c),(d)穿刺孔区域SEM图像
1 DEIMEDE V , ELMASIDES C . Separators for lithium-ion batteries:a review on the production processes and recent developments[J]. Energy Technology, 2015, 3 (5): 453- 468.
doi: 10.1002/ente.v3.5
2 LI J , DANIEL C , WOOD D . Materials processing for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (5): 2452- 2460.
doi: 10.1016/j.jpowsour.2010.11.001
3 HARRY K J , HALLINAN D T , PARKINSON D Y , et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13 (1): 69- 73.
doi: 10.1038/nmat3793
4 ZHANG S S . A review on the separators of liquid electrolyte Li-ion batteries[J]. Journal of Power Sources, 2007, 164 (1): 351- 364.
doi: 10.1016/j.jpowsour.2006.10.065
5 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46 (10): 120- 126.
doi: 10.11868/j.issn.1001-4381.2017.000464
5 LI K F , YIN X Y . Polyphenylene oxide-based nanofiber separator prepared by electrospinning method for lithium-ion batteries[J]. Journal of Materials Engineering, 2018, 46 (10): 120- 126.
doi: 10.11868/j.issn.1001-4381.2017.000464
6 KANG W , MA X , ZHAO H , et al. Electrospun cellulose aceta-te/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries[J]. Journal of Solid State Electrochem-istry, 2016, 20 (10): 2791- 2803.
doi: 10.1007/s10008-016-3271-y
7 SHAYAPAT J , CHUNG O H , PARK J S . Electrospun polyimide-composite separator for lithium-ion batteries[J]. Ele-ctrochimica Acta, 2015, 170 (1): 10- 21.
8 HUANG F , LIU W , LI P , et al. Electrochemical properties of LLTO/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery[J]. Materials, 2016, 9 (2): 11- 15.
9 ZHOU X , YUE L , ZHANG J , et al. A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator[J]. Journal of the Electrochemical Society, 2013, 160 (9): A1341- A1347.
doi: 10.1149/2.003309jes
10 龚文正, 周晶晶, 阮诗伦, 等. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46 (3): 1- 6.
doi: 10.3969/j.issn.1673-1433.2018.03.001
10 GONG W Z , ZHOU J J , RUAN S L , et al. PPESK/PVDF lithium-ion battery composite separators fabricated by combin-ation of electrospinning and electrospraying techniques[J]. Journal of Materials Engineering, 2018, 46 (3): 1- 6.
doi: 10.3969/j.issn.1673-1433.2018.03.001
11 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46 (3): 7- 12.
doi: 10.3969/j.issn.1673-1433.2018.03.003
11 GONG G F , WANG L , LAN J . Electrochemical properties of EVOH-SO3Li/PET lithium ion battery separator via electrosp-inning[J]. Journal of Materials Engineering, 2018, 46 (3): 7- 12.
doi: 10.3969/j.issn.1673-1433.2018.03.003
12 ZHAI Y , XIAO K , YU J , et al. Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous sep-arators with high performance for lithium ion batteries[J]. Electrochimica Acta, 2015, 154 (2): 19- 26.
13 BRISSOT C , ROSSO M , CHAZALVIEL J N , et al. In situ study of dendritic growth in lithium/PEO-salt/lithium cells[J]. Electrochimica Acta, 1998, 43 (10/11): 1569- 1574.
14 QI W , LU C , CHEN P , et al. Electrochemical performances and thermal properties of electrospun poly (phthalazinone ether sulfone ketone) membrane for lithium-ion battery[J]. Materials Letters, 2012, 66 (1): 239- 241.
doi: 10.1016/j.matlet.2011.08.042
15 CHEN W Y , LIU Y B , MA Y , et al. Improved performance of PVdF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning meth-od[J]. Materials Letters, 2014, 133 (1): 67- 70.
16 YANILMAZ M , DIRICAN M , ZHANG X . Evaluation of electrospun SiO2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries[J]. Electrochimica Acta, 2014, 133 (1): 501- 508.
17 SILBERSTEIN M N , PAI C L , RUTLEDGE G C , et al. Elastic-plastic behavior of non-woven fibrous mats[J]. Journal of the Mechanics and Physics of Solids, 2012, 60 (2): 295- 318.
doi: 10.1016/j.jmps.2011.10.007
18 LEE H , YANILMAZ M , TOPRAKCI O , et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7 (12): 3857- 3886.
[1] 曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
[2] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[3] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[4] 沈慧颖, 吕子豪, 庄粟裕, 曹秀明, 王清清. 静电纺CA/PpIX多孔纤维膜的制备及其光动力性能[J]. 材料工程, 2021, 49(5): 89-97.
[5] 赵昕, 任宝娜, 胡苗苗, 皮浩弘, 张秀芹, 吴晶. 特殊浸润性纳米纤维膜材料在油水分离中的研究进展[J]. 材料工程, 2021, 49(10): 43-54.
[6] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[7] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[8] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[9] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[10] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[11] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[12] 龚文正, 周晶晶, 阮诗伦, 申长雨. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46(3): 1-6.
[13] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[14] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[15] 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn