Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 159-166    DOI: 10.11868/j.issn.1001-4381.2017.001286
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于响应面全局优化技术的蜂窝板材料性能参数修正
孙卫青, 程伟
北京航空航天大学 航空科学与工程学院, 北京 100191
Material properties updating of honeycomb sandwich plates using a global optimization technique based on response surface model
SUN Wei-qing, CHENG Wei
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1490 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 蜂窝夹层板结构广泛应用于航空航天行业中,建立准确的蜂窝夹芯板有限元模型是分析和优化航天器微振动的必要前提。基于蜂窝芯的力学等效参数模型,建立了蜂窝板的动力学有限元模型。使用正交数值实验设计筛选出对蜂窝板动力学性能影响最大的蜂窝芯等效材料参数,并利用基于响应面模型自适应采样技术的全局优化方法快速地完成了蜂窝芯关键材料参数的优化修正。修正后的蜂窝板有限元模型前六阶模态频率与实验结果的平均误差小于1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙卫青
程伟
关键词 数值实验设计有限元模型修正全局优化蜂窝结构动力学响应面模型    
Abstract:Honeycomb sandwich plates are used widely in the aerospace industry. Building accurate finite element models of honeycomb sandwich plates is necessary for analyzing and optimizing the microvibration that occurs in spacecraft. A finite element dynamic model of a honeycomb plate was built, and then by using orthogonal design of experimental computation, the most important material parameters of honeycomb core equivalent model were identified. Through the global optimization based on adaptive sampling guided by response surface model, the parameters of honeycomb core were updated efficiently. The average error of first six modal frequencies of the updated finite element model against experimental result is reduced to less than 1%.
Key wordsdesign of experimental computation    finite element model updating    global optimization    honeycomb    structural dynamics    response surface model
收稿日期: 2017-10-15      出版日期: 2019-05-17
中图分类号:  V216.5+4  
  TB533+.1  
通讯作者: 孙卫青(1978-),男,博士研究生,研究方向为固体力学,联系地址:北京航空航天大学航空科学与工程学院,(100191),E-mail:nvh.china@gmail.com     E-mail: nvh.china@gmail.com
引用本文:   
孙卫青, 程伟. 基于响应面全局优化技术的蜂窝板材料性能参数修正[J]. 材料工程, 2019, 47(5): 159-166.
SUN Wei-qing, CHENG Wei. Material properties updating of honeycomb sandwich plates using a global optimization technique based on response surface model. Journal of Materials Engineering, 2019, 47(5): 159-166.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001286      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/159
[1] DAWE D J, ROURAEIL O L. Rayleigh-Ritz vibration analysis of Mindlin plates[J]. Journal of Sound & Vibration, 1980, 69(3):345-359.
[2] CRAIG T J, DAWE D J. Flexural vibration of symmetrically laminated composite rectangular plates including transverse shear effects[J]. International Journal of Solids & Structures, 1986, 22(2):155-169.
[3] YUAN W X, DAWE D J. Free vibration of sandwich plates with laminated faces[J]. International Journal for Numerical Methods in Engineering, 2002, 54(2):195-217.
[4] NAYAK A K, MOY S S J, SHENOI R A. Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory[J]. Composites Part B Engineering, 2002, 33(7):505-519.
[5] MAHERI M R, ADAMS R D. Finite-element prediction of modal response of damped layered composite panels[J]. Composites Science & Technology, 1995, 55(1):13-23.
[6] RIKARDS R, CHATE A, KORIJAKIN A. Vibration and damp-ing analysis of laminated composite plates by the finite element method[J]. Engineering Computations, 1995, 12(1):61-74.
[7] CHEN Q, CHAN Y W. Integral finite element method for dyna-mical analysis of elastic-viscoelastic composite structures[J]. Computers & Structures, 2000, 74(1):51-64.
[8] NAYAK A K, MOY S S J, SHENOI R A. A higher order finite element theory for buckling and vibration analysis of initially stre-ssed composite sandwich plates[J]. Journal of Sound & Vibr-ation, 2005, 286(4/5):763-780.
[9] ZHANG S H, CHEN H L. Modeling and vibration analysis of a composite supporter for aerospace applications[J]. Advanced Composite Materials, 2005, 14(2):199-210.
[10] SCHWINGSHACKL C W, AGLIETTI G S, CUNNINGHAM P R. Determination of honeycomb material properties:existing theories and an alternative dynamic approach[J]. Journal of Aerospace Engineering, 2006, 19(3):177-183.
[11] MAHERI M R, ADAMS R D, HUGON J. Vibration damping in sandwich panels[J]. Journal of Materials Science,2008,43(20):6604-6618.
[12] BOUDJEMAI A, AMRI R, MANKOUR A, et al. Modal analy-sis and testing of hexagonal honeycomb plates used for satellite structural design[J]. Materials & Design, 2012, 35:266-275.
[13] MERUANE V, FIERRO V, ORTIZBERNARDIN A. A maxi-mum entropy approach to assess debonding in honeycomb alumi-num plates[J]. Entropy, 2014, 16(5):2869-2889.
[14] JIANG D, ZHANG D, FEI Q, et al. An approach on identifi-cation of equivalent properties of honeycomb core using experi-mental modal data[J]. Finite Elements in Analysis & Design, 2014, 90(6):84-92.
[15] DEBRUYNE S, VANDEPITTE D, MOENS D. Identification of design parameter variability of honeycomb sandwich beams from a study of limited available experimental dynamic structural response data[J]. Computers & Structures, 2015, 146:197-213.
[16] 孔宪仁,秦玉灵,罗文波. 基于改进高斯径向基函数响应面方法的蜂窝板模型修正[J]. 复合材料学报, 2011, 28(5):220-227. KONG X R, QIN Y L, LUO W B. Improved Gaussian RBF response surface method-based model updating for the honey-comb sandwich panel[J]. Acta Materiae Compositae Sinica, 2011, 28(5):220-227.
[17] KELSEY S, GELLATLY R A, CLARK B W. The shear modu-lus of foil honeycomb cores:a theoretical and experimental investigation on cores used in sandwich construction[J]. Aircraft Engineering and Aerospace Technology, 1958, 30(10):294-302.
[18] GIBSON L J A A, ASHBY M F. Cellular solids:structure and properties[M]. Cambridge, UK:Cambridge University Press, 1997.
[19] KLINTWORTH J W, STRONGE W J. Elasto-plastic yield lim-its and deformation laws for transversely crushed honeycombs[J]. International Journal of Mechanical Sciences, 1988, 30(3/4):273-292.
[20] SCARPA F, TOMLINSON G. Theoretical characteristics of the vibration of sandwich plates with in-plane negative Poisson's ratio values[J]. Journal of Sound & Vibration, 2000, 230(1):45-67.
[21] GREDIAC M. A finite element study of the transverse shear in honeycomb cores[J]. International Journal of Solids & Stru-ctures, 1993, 30(13):1777-1788.
[22] ZHANG J, ASHBY M F. The out-of-plane properties of hone-ycombs[J]. International Journal of Mechanical Sciences, 1992, 34(6):475-489.
[23] DONG Z. Trends, features, and tests of common and recently introduced global optimization methods[J]. Engineering Optim-ization, 2010, 42(8):691-718.
[24] 王开山,李传日,庞月婵,等. 基于响应面法的印制电路板组件有限元模型修正[J]. 振动与冲击, 2015, 34(22):42-46. WANG K S, LI C R, PANG Y C, et al. Finite element model updating of printed circuit board assembly based on response sur-face methodology[J]. Journal of Vibration and Shock, 2015, 34(22):42-46
[25] 鲍诺,王春洁,赵军鹏,等. 基于响应面法的结构动力学模型修正[J]. 振动与冲击, 2013, 32(16):54-58. BAO N, WANG C J, ZHAO J P, et al. Model updating of stru-cture dynamics based on response surface methodology[J]. Jour-nal of Vibration & Shock, 2013, 32(16):54-58.
[26] DONG A Y Z. Trends, features, and tests of common and rece-ntly introduced global optimization methods[J]. Engineering Optimization, 2010, 42(8):691-718.
[27] SACKS J, WELCH W J, MOTCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989:409-423.
[28] SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metam-odels for computer-based engineering design:survey and recom-mendations[J]. Engineering with Computers,2001,17(2):129-150.
[29] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1):1-13.
[30] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[1] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
[2] 郑吉良, 彭明军, 孙勇. 等腰梯形蜂窝芯玻璃钢夹芯板的面外压缩性能[J]. 材料工程, 2017, 45(2): 72-79.
[3] 赵欢, 程方杰, 齐书梅, 肖兵, 姚俊峰. 中温自反应钎焊铝蜂窝芯耐高温老化性能分析[J]. 材料工程, 2016, 44(11): 39-44.
[4] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[5] 王中钢, 鲁寨军, 夏茜. 异面预压铝蜂窝降低初始峰值力敏感性分析[J]. 材料工程, 2013, 0(5): 78-82,88.
[6] 郭霞, 关志东, 刘遂, 晏冬秀, 刘卫平, 孙凯. 修理工艺对边缘封闭蜂窝夹层结构弯曲性能的影响[J]. 材料工程, 2013, 0(12): 27-31.
[7] 鲁超, 李永新, 董二宝, 杨杰. 零泊松比蜂窝芯等效弹性模量研究[J]. 材料工程, 2013, 0(12): 80-84.
[8] 肇研, 董昊, 胡建平, 李翔, 刘建华. 湿热循环对Nomex蜂窝/环氧树脂夹层复合材料性能的影响[J]. 材料工程, 2012, 0(6): 1-6.
[9] 夏盛来, 何景武, 王耀东. 蜂窝夹芯板表面加工的平整度分析[J]. 材料工程, 2012, 0(6): 43-47.
[10] 刘叶花, 谢桂兰, 曹尉南, 汤亚男. 铝蜂窝胞元结构参数对其宏观等效表征性能的影响[J]. 材料工程, 2011, 0(11): 29-34.
[11] 胡建平, 蔡吉喆, 肇研, 刘建华. 湿热环境对蜂窝夹层复合材料性能的影响[J]. 材料工程, 2010, 0(11): 43-47.
[12] 周芸, 左孝青, 梅俊, 张喜秋, 孙加林. 挤压Fe-25Cr-5Al金属蜂窝的烧结和组织结构研究[J]. 材料工程, 2006, 0(3): 6-10.
[13] 王芙蓉, 孙凤礼, 高山. 汽车尾气净化用蜂窝状催化剂的研究[J]. 材料工程, 2003, 0(2): 41-42,47.
[14] 仲维畅. 声阻探伤指示“异常”的等效梁动变位原理[J]. 材料工程, 1996, 0(2): 40-41.
[15] 莫安来, 汪松, 康利红. 圆环钎焊蜂窝结构超声C扫描检测及其系统研制[J]. 材料工程, 1996, 0(10): 6-8,22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn