Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 40-48    DOI: 10.11868/j.issn.1001-4381.2017.001301
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于分子动力学镁合金塑性变形机制的研究进展
杨宝成1,2, 彭艳1,2, 潘复生3, 石宝东1,2
1. 燕山大学 国家冷轧板带装备及工艺工程技术研究中心, 河北 秦皇岛 066004;
2. 燕山大学 机械工程学院, 河北 秦皇岛 066004;
3. 重庆大学 国家镁合金材料工程技术研究中心, 重庆 400044
Research progress in plastic deformation mechanism of Mg alloys based on molecular dynamics
YANG Bao-cheng1,2, PENG Yan1,2, PAN Fu-sheng3, SHI Bao-dong1,2
1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China;
2. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China;
3. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
全文: PDF(2507 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于分子动力学方法的计算材料科学是研究微纳米尺度变形机理的重要途径,有助于理清镁合金不同塑性变形机制间的详细竞争关系。本文概述了镁合金中滑移、孪生和晶界滑移变形机制的作用机理;简要介绍了分子动力学基本原理和适用于密排六方结构金属的常用势函数;详细阐述了基于分子动力学方法镁合金塑性变形机制的研究进展。在综述目前研究存在问题的基础上,指出开发适用于镁合金多元体系的高精度势函数以及如何实现多个尺度的衔接等方面是今后研究的重要方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宝成
彭艳
潘复生
石宝东
关键词 分子动力学镁合金塑性变形机制势函数    
Abstract:The computational material science based on molecular dynamics method is critical for the investigation of the micro-nano scale plastic deformation, which helps to clarify the competition relationship between different plastic deformation mechanisms of magnesium alloys.The mechanism of slip, twinning and grain boundary sliding in magnesium alloys was summarized; the basic principles of molecular dynamics and the potential functions commonly applied to the hexagonal close-packed structure metals were briefly introduced. Moreover,the research progress of plastic deformation mechanism of Mg alloys based on the molecular dynamics was mainly analyzed. Based on the main problems mentioned above, it was pointed out that the development of high-precision potential function for magnesium alloy multiple systems and how to achieve the relationship of multiple scales will be the focused directions in the further research.
Key wordsmolecular dynamics    magnesium alloy    plastic deformation mechanism    potential function
收稿日期: 2017-10-22      出版日期: 2019-08-22
中图分类号:  TG146.2+2  
通讯作者: 石宝东(1982-),男,副教授,博士,主要从事特种轻合金(镁、铝、钛合金)变形机制、显微组织调控、热处理工艺,宏观-介观-微观跨尺度本构模型的研究工作,E-mail:baodong.shi@ysu.edu.cn     E-mail: baodong.shi@ysu.edu.cn
引用本文:   
杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
YANG Bao-cheng, PENG Yan, PAN Fu-sheng, SHI Bao-dong. Research progress in plastic deformation mechanism of Mg alloys based on molecular dynamics. Journal of Materials Engineering, 2019, 47(8): 40-48.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001301      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/40
[1] 宋珂.镁合金在汽车轻量化中的应用发展[J].机械研究与应用,2007,20(1):14-16. SONG K. The development and application of magnesium alloys in automotive industry[J].Mechanical Research & Application,2007,20(1):14-16.
[2] 胡斌,彭立明,曾小勤,等. 镁合金在汽车领域中的应用(一)——镁合金在汽车领域中应用背景和发展现状[J]. 铸造工程,2007,31(4):34-39. HU B,PENG L M,ZENG X Q,et al.Applications of magnesium alloy in automobile:background and developmental status of the magnesium alloy in automobile[J].Foundry Engineering,2007,31(4):34-39.
[3] 吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016,22(3):281-292. WU G H,CHEN Y S,DING W J.Current research, application and future prospect of magnesium alloys in aerospace industry[J].Manned Spaceflight,2016,22(3):281-292.
[4] WU Z,CURTIN W A.The origins of high hardening and low ductility in magnesium[J].Nature,2015,526(7571):62-67.
[5] WU Z,AHMAD R,YIN B,et al.Mechanistic origin and prediction of enhanced ductility in magnesium alloys[J].Science,2018,359(6374):447-452.
[6] 宋广胜,陈强强,徐勇,等.AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J].材料工程,2016,44(4):1-8. SONG G S,CHEN Q Q,XU Y,et al.Deformation micro-mechanism of AZ31 Mg alloy during tension at room temperature by EBSD in-situ tracking[J].Journal of Materials Engineering,2016,44(4):1-8.
[7] 丁文江,曾小勤.中国Mg材料研发与应用[J].金属学报,2010,46(11):1450-1457. DING W J,ZENG X Q.Research and applications of magnesium in China[J].Acta Metallurgica Sinica,2010,46(11):1450-1457.
[8] SOLONENKO O P,KUDINOV V V,SMIRNOV A V,et al.Micro-metallurgy of splats:theory,computer simulation and experiment[J].JSME International Journal,2005,48(3):366-388.
[9] POKORSKA I.Computer methods in design and identification of powder metallurgy materials[J].Advanced Materials Research,2011,314/316:1666-1669.
[10] 李立云,曲周德.镁合金塑性变形机制及动态再结晶研究进展[J].机械研究与应用,2015,28(6):197-199. LI L Y,QU Z D.Research achievements of plastic deformation mechanism and dynamic recrystallization of magnesium alloy[J].Mechanical Research & Application,2015,28(6):197-199.
[11] 陈振华.变形镁合金[M].北京:化学工业出版社,2005:48-98. CHEN Z H.Wrought magnesium alloys[M].Beijing:Chemical Industry Press,2005:48-98.
[12] 刘庆.镁合金塑性变形机制研究进展[J].金属学报,2010,46(11):1458-1472. LIU Q.Research progress on plastic deformation mechanism of Mg alloys[J].Acta Metallurgica Sinica,2010,46(11):1458-1472.
[13] 詹美燕,李春明,尚俊玲.镁合金的塑性变形机制和孪生变形研究[J].材料导报,2011,25(2):1-7. ZHAN M Y,LI C M,SHANG J L.Investigation of the plastic deformation mechanism and twinning of magnesium alloys[J].Materials Review,2011,25(2):1-7.
[14] AGNEW S R,DUYGULU O.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J].International Journal of Plasticity,2005,21(6):1161-1193.
[15] KOIKE J,KOBAYASHI T,MUKAI T,et al.The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J].Acta Materialia,2003,51(7):2055-2065.
[16] KAISER F,LETZIG D,BOHLEN J,et al.Anisotropic properties of magnesium sheet AZ31[J].Materials Science Forum,2003,419/422:315-320.
[17] ANDO S,TANAKA M,TONDA H.Pyramidal slip in magne-sium alloy single crystals[J].Materials Science Forum,2003,419/422:87-92.
[18] 刘俊伟,陈振华,陈鼎,等. 孪生对热轧AZ31镁合金中低温变形行为的影响[J].航空材料学报,2012,32(1):10-14. LIU J W,CHEN Z H,CHEN D,et al.Effect of twinning on moderate-temperature deformation behavior of hot-rolled Mg alloy[J].Journal of Aeronautical Materials,2012,32(1):10-14.
[19] YOO M H.Slip,twinning,and fracture in hexagonal close-packed metals[J].Metallurgical Transactions A,1981,12(3):409-418.
[20] KESHAVARZ Z,BARNETT M R.EBSD analysis of deform-ation modes in Mg-3Al-1Zn[J].Scripta Materialia,2006,55(10):915-918.
[21] WANG Y N,HUANG J C.The role of twinning and untwining in yielding behavior in hot-extruded Mg-Al-Zn alloy[J].Acta Materialia,2007,55(3):897-905.
[22] LOU X Y,LI M,BOGER R K,et al.Hardening evolution of AZ31B Mg sheet[J].International Journal of Plasticity,2007,23(1):44-86.
[23] KOIKE J.Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J].Metallurgical and Materials Transactions A,2005,36(7):1689-1696.
[24] BARNETT M R,KESHAVARZ Z,BEER A G,et al.Non-Schmid behavior during secondary twinning in a polycrystalline magnesium alloy[J].Acta Materialia,2008,56(1):5-15.
[25] BARNETT M R.Twinning and the ductility of magnesium allo-ys:part Ⅰ:"Tension" twins[J].Materials Science and Engineering:A,2007,464(1/2):1-7.
[26] BARNETT M R.Twinning and the ductility of magnesium allo-ys:part Ⅱ:"Contraction" twins[J].Materials Science and Engineering:A, 2007,464(1/2):8-16.
[27] CIZEK P,BARNETT M R.Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J].Scripta Materialia,2008,59(9):959-962.
[28] 余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):1081-1086. YU K,LI W X,WANG R C.Plastic deformation mechanism of magnesium alloys[J].The Chinese Journal of Nonferrous Metals,2005,15(7):1081-1086.
[29] 郑翊,严红革,陈吉华,等.高应变速率轧制ZK60板材的超塑性行为[J].中国有色金属学报,2014,24(4):839-847. ZHENG Y,YAN H G,CHEN J H,et al.Superplasticity behavior of ZK60 alloy sheet prepared by high strain rate rolling process[J].The Chinese Journal of Nonferrous Metals,2014,24(4):839-847.
[30] 殷开梁.分子动力学模拟的若干基础应用和理论[D].杭州:浙江大学,2006. YIN K L.Some basic applications and theories of molecular dynamics simulation[D].Hangzhou:Zhejiang University,2006.
[31] ABRAHAM F F,WALKUP R,GAO H,et al.Simulating mat-erials failure by using up to one billion atoms and the world's fastest computer:brittle fracture[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(9):5777-5782.
[32] 段献宝.晶格反演修正型嵌入原子势函数理论及应用研究[D].武汉:华中科技大学,2015. DUAN X B.Theory and applications of lattice inversion modified embedded atom method[D].Wuhan:Huazhong University of Science and Technology,2015.
[33] LIU X Y,ADAMS J B,ERCOLESSI F,et al.EAM potential for magnesium from quantum mechanical forces[J].Modelling and Simulation in Materials Science and Engineering,1996,4(3):293-303.
[34] SUN D Y,MENDELEV M I,BECKER C A,et al.Crystal-melt interfacial free energies in hcp metals:a molecular dynamics study of Mg[J].Physical Review B,2006,73:024116.
[35] BASKES M I,JOHNSON R A.Modified embedded atom poten-tials for HCP metals[J].Modelling Simulation in Materials Science Engineering,1994,2(1):147-163.
[36] KIM K H,JEON J B,LEE B J. Modified embedded-atom meth-od interatomic potentials for Mg-X(X=Y,Sn,Ca) binary systems[J]. Calphad,2015,48:27-34.
[37] KIM K H,LEE B J.Modified embedded-atom method interato-mic potentials for Mg-Nd and Mg-Pb binary systems[J].Calphad,2017,57:55-61.
[38] XU B,CAPOLUNGO L,RODNEY D.On the importance of prismatic/basal interfaces in the growth of {1012} twins in hexagonal close packed crystals[J].Scripta Materialia,2013,68(11):901-904.
[39] LECLERCQ L,CAPOLUNGO L,RODNEY D.Atomic-scale comparison between {1101} and {1102} twin growth mecha-nisms in magnesium[J].Materials Research Letters,2014,2(3):152-159.
[40] WANG J,BEYERLEIN I J, TOMÉ C N.An atomic and probabilistic perspective on twin nucleation in Mg[J].Scripta Materialia,2010,63(7):741-746.
[41] WANG J,HIRTH J P, TOMÉ C N.(1012) twinning nucleation mechanisms in hexagonal-close-packed crystals[J].Acta Materi-alia,2009,57(18):5521-5530.
[42] AGHABABAEI R,JOSHI S P.Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simul-ations[J].Acta Materialia,2014,69(5):326-342.
[43] XU H L,SU X M,YUAN G Y,et al.Primary and secondary modes of deformation twinning in HCP Mg based on atomistic simulations[J].Transactions of Nonferrous Metals Society of China,2014,24(12):3804-3809.
[44] KIM D H,EBRAHIMI F,MANUEL M V,et al.Grain-boundary activated pyramidal dislocations in nano-textured Mg by mole-cular dynamics simulation[J].Materials Science and Engin-eering:A,2011,528(16):5411-5420.
[45] TANG Y Z,JAAFAR A,AWADY E.Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals[J].Acta Materialia,2014,71:319-332.
[46] LUQUE A,GHAZISAEIDI M,CURTIN W A.Deformation modes in magnesium (0001) and(0111) single crystals:simulations versus experiments[J].Modelling and Simulation in Materials Science and Engineering,2013,21:045010.
[47] SOMEKAWA H,MUKAI T.Effect of grain boundary structures on grain boundary sliding in magnesium[J].Materials Letters,2012,76(1):32-35.
[48] KAREWAR S,GUPTA N,GROH S,et al.Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close pack-ed magnesium[J].Computational Materials Science,2017,126:252-264.
[49] KAREWAR S V,GUPTA N,CARO A,et al.A concentration dependent embedded atom method potential for the Mg-Li system[J].Computational Materials Science,2014,85:172-178.
[50] CARO A,CROWSON D A,CARO M.Classical many-body potential for concentrated alloys and the inversion of order in iron-chromium alloys[J].Physical Review Letters,2005,95(7):075702.
[51] SOMEKAWA H,MUKAI T.Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys[J].Computational Materials Science,2013,77(3):424-429.
[52] ZU Q,GUO Y F,XU S,et al.Molecular dynamics simulations of the orientation effect on the initial plastic deformation of magnesium single crystals[J].Acta Metallurgica Sinica,2016,29(3):301-312.
[53] LIAO M,LI B,HORSTEMEYER M F.Interaction between bas-al slip and a Mg17Al12 precipitate in magnesium[J].Metallurgical and Materials Transactions A,2014,45(8):534-539.
[54] JELINEK B,GROH S,HORSTEMEYER M F,et al.Modified embedded atom method potential for Al,Si,Mg,Cu,and Fe alloys[J].Physical Review B,2012,85:245102.
[1] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[2] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[3] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[4] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
[5] 张岩, 肖万伸. 含Ni夹杂的纳米晶Cu基体力学性能分子动力学模拟[J]. 材料工程, 2018, 46(4): 104-110.
[6] 金玉花, 甘瑞根, 陈飞, 邵庆丰, 王希靖, 郭廷彪. 搅拌摩擦焊辅助Al/Zn/Mg接头扩散连接[J]. 材料工程, 2018, 46(3): 55-60.
[7] 石晶晶, 叶朋, 崔凯旋, 汪炳叔, 邓丽萍, 王晨, 李强. 孪晶诱发的AZ31镁合金静态再结晶行为[J]. 材料工程, 2018, 46(11): 134-140.
[8] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[9] 游国强, 郭伟, 张秀丽, 文恒玉, 沈鹭. 镁合金摩擦焊的研究进展[J]. 材料工程, 2018, 46(1): 141-148.
[10] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[11] 蒋晓, 郭瑞光, 唐长斌. 硬脂酸改性镁合金铈钒转化膜的制备与性能[J]. 材料工程, 2017, 45(5): 13-19.
[12] 赵曦, 贾瑞灵, 周伟光, 郭锋. 稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J]. 材料工程, 2017, 45(4): 41-50.
[13] 方志浩, 马程鹏, 管迎春, 周伟, 郑宏宇. 激光熔化镁合金凝固组织及腐蚀行为[J]. 材料工程, 2017, 45(12): 1-9.
[14] 乔及森, 向阳芷, 聂书才, 张涵. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45(11): 78-83.
[15] 陈建华, 张喜燕, 任毅. AZ31B镁合金/PRO500超高强度钢TIG熔钎连接界面反应特性及力学性能[J]. 材料工程, 2017, 45(11): 84-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn