Research progress in plastic deformation mechanism of Mg alloys based on molecular dynamics
YANG Bao-cheng1,2, PENG Yan1,2, PAN Fu-sheng3, SHI Bao-dong1,2
1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China;
2. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China;
3. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
Abstract:The computational material science based on molecular dynamics method is critical for the investigation of the micro-nano scale plastic deformation, which helps to clarify the competition relationship between different plastic deformation mechanisms of magnesium alloys.The mechanism of slip, twinning and grain boundary sliding in magnesium alloys was summarized; the basic principles of molecular dynamics and the potential functions commonly applied to the hexagonal close-packed structure metals were briefly introduced. Moreover,the research progress of plastic deformation mechanism of Mg alloys based on the molecular dynamics was mainly analyzed. Based on the main problems mentioned above, it was pointed out that the development of high-precision potential function for magnesium alloy multiple systems and how to achieve the relationship of multiple scales will be the focused directions in the further research.
杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
YANG Bao-cheng, PENG Yan, PAN Fu-sheng, SHI Bao-dong. Research progress in plastic deformation mechanism of Mg alloys based on molecular dynamics. Journal of Materials Engineering, 2019, 47(8): 40-48.
[1] 宋珂.镁合金在汽车轻量化中的应用发展[J].机械研究与应用,2007,20(1):14-16. SONG K. The development and application of magnesium alloys in automotive industry[J].Mechanical Research & Application,2007,20(1):14-16.
[2] 胡斌,彭立明,曾小勤,等. 镁合金在汽车领域中的应用(一)——镁合金在汽车领域中应用背景和发展现状[J]. 铸造工程,2007,31(4):34-39. HU B,PENG L M,ZENG X Q,et al.Applications of magnesium alloy in automobile:background and developmental status of the magnesium alloy in automobile[J].Foundry Engineering,2007,31(4):34-39.
[3] 吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016,22(3):281-292. WU G H,CHEN Y S,DING W J.Current research, application and future prospect of magnesium alloys in aerospace industry[J].Manned Spaceflight,2016,22(3):281-292.
[4] WU Z,CURTIN W A.The origins of high hardening and low ductility in magnesium[J].Nature,2015,526(7571):62-67.
[5] WU Z,AHMAD R,YIN B,et al.Mechanistic origin and prediction of enhanced ductility in magnesium alloys[J].Science,2018,359(6374):447-452.
[6] 宋广胜,陈强强,徐勇,等.AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J].材料工程,2016,44(4):1-8. SONG G S,CHEN Q Q,XU Y,et al.Deformation micro-mechanism of AZ31 Mg alloy during tension at room temperature by EBSD in-situ tracking[J].Journal of Materials Engineering,2016,44(4):1-8.
[7] 丁文江,曾小勤.中国Mg材料研发与应用[J].金属学报,2010,46(11):1450-1457. DING W J,ZENG X Q.Research and applications of magnesium in China[J].Acta Metallurgica Sinica,2010,46(11):1450-1457.
[8] SOLONENKO O P,KUDINOV V V,SMIRNOV A V,et al.Micro-metallurgy of splats:theory,computer simulation and experiment[J].JSME International Journal,2005,48(3):366-388.
[9] POKORSKA I.Computer methods in design and identification of powder metallurgy materials[J].Advanced Materials Research,2011,314/316:1666-1669.
[10] 李立云,曲周德.镁合金塑性变形机制及动态再结晶研究进展[J].机械研究与应用,2015,28(6):197-199. LI L Y,QU Z D.Research achievements of plastic deformation mechanism and dynamic recrystallization of magnesium alloy[J].Mechanical Research & Application,2015,28(6):197-199.
[11] 陈振华.变形镁合金[M].北京:化学工业出版社,2005:48-98. CHEN Z H.Wrought magnesium alloys[M].Beijing:Chemical Industry Press,2005:48-98.
[12] 刘庆.镁合金塑性变形机制研究进展[J].金属学报,2010,46(11):1458-1472. LIU Q.Research progress on plastic deformation mechanism of Mg alloys[J].Acta Metallurgica Sinica,2010,46(11):1458-1472.
[13] 詹美燕,李春明,尚俊玲.镁合金的塑性变形机制和孪生变形研究[J].材料导报,2011,25(2):1-7. ZHAN M Y,LI C M,SHANG J L.Investigation of the plastic deformation mechanism and twinning of magnesium alloys[J].Materials Review,2011,25(2):1-7.
[14] AGNEW S R,DUYGULU O.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J].International Journal of Plasticity,2005,21(6):1161-1193.
[15] KOIKE J,KOBAYASHI T,MUKAI T,et al.The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J].Acta Materialia,2003,51(7):2055-2065.
[16] KAISER F,LETZIG D,BOHLEN J,et al.Anisotropic properties of magnesium sheet AZ31[J].Materials Science Forum,2003,419/422:315-320.
[17] ANDO S,TANAKA M,TONDA H.Pyramidal slip in magne-sium alloy single crystals[J].Materials Science Forum,2003,419/422:87-92.
[18] 刘俊伟,陈振华,陈鼎,等. 孪生对热轧AZ31镁合金中低温变形行为的影响[J].航空材料学报,2012,32(1):10-14. LIU J W,CHEN Z H,CHEN D,et al.Effect of twinning on moderate-temperature deformation behavior of hot-rolled Mg alloy[J].Journal of Aeronautical Materials,2012,32(1):10-14.
[19] YOO M H.Slip,twinning,and fracture in hexagonal close-packed metals[J].Metallurgical Transactions A,1981,12(3):409-418.
[20] KESHAVARZ Z,BARNETT M R.EBSD analysis of deform-ation modes in Mg-3Al-1Zn[J].Scripta Materialia,2006,55(10):915-918.
[21] WANG Y N,HUANG J C.The role of twinning and untwining in yielding behavior in hot-extruded Mg-Al-Zn alloy[J].Acta Materialia,2007,55(3):897-905.
[22] LOU X Y,LI M,BOGER R K,et al.Hardening evolution of AZ31B Mg sheet[J].International Journal of Plasticity,2007,23(1):44-86.
[23] KOIKE J.Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J].Metallurgical and Materials Transactions A,2005,36(7):1689-1696.
[24] BARNETT M R,KESHAVARZ Z,BEER A G,et al.Non-Schmid behavior during secondary twinning in a polycrystalline magnesium alloy[J].Acta Materialia,2008,56(1):5-15.
[25] BARNETT M R.Twinning and the ductility of magnesium allo-ys:part Ⅰ:"Tension" twins[J].Materials Science and Engineering:A,2007,464(1/2):1-7.
[26] BARNETT M R.Twinning and the ductility of magnesium allo-ys:part Ⅱ:"Contraction" twins[J].Materials Science and Engineering:A, 2007,464(1/2):8-16.
[27] CIZEK P,BARNETT M R.Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J].Scripta Materialia,2008,59(9):959-962.
[28] 余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):1081-1086. YU K,LI W X,WANG R C.Plastic deformation mechanism of magnesium alloys[J].The Chinese Journal of Nonferrous Metals,2005,15(7):1081-1086.
[29] 郑翊,严红革,陈吉华,等.高应变速率轧制ZK60板材的超塑性行为[J].中国有色金属学报,2014,24(4):839-847. ZHENG Y,YAN H G,CHEN J H,et al.Superplasticity behavior of ZK60 alloy sheet prepared by high strain rate rolling process[J].The Chinese Journal of Nonferrous Metals,2014,24(4):839-847.
[30] 殷开梁.分子动力学模拟的若干基础应用和理论[D].杭州:浙江大学,2006. YIN K L.Some basic applications and theories of molecular dynamics simulation[D].Hangzhou:Zhejiang University,2006.
[31] ABRAHAM F F,WALKUP R,GAO H,et al.Simulating mat-erials failure by using up to one billion atoms and the world's fastest computer:brittle fracture[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(9):5777-5782.
[32] 段献宝.晶格反演修正型嵌入原子势函数理论及应用研究[D].武汉:华中科技大学,2015. DUAN X B.Theory and applications of lattice inversion modified embedded atom method[D].Wuhan:Huazhong University of Science and Technology,2015.
[33] LIU X Y,ADAMS J B,ERCOLESSI F,et al.EAM potential for magnesium from quantum mechanical forces[J].Modelling and Simulation in Materials Science and Engineering,1996,4(3):293-303.
[34] SUN D Y,MENDELEV M I,BECKER C A,et al.Crystal-melt interfacial free energies in hcp metals:a molecular dynamics study of Mg[J].Physical Review B,2006,73:024116.
[35] BASKES M I,JOHNSON R A.Modified embedded atom poten-tials for HCP metals[J].Modelling Simulation in Materials Science Engineering,1994,2(1):147-163.
[36] KIM K H,JEON J B,LEE B J. Modified embedded-atom meth-od interatomic potentials for Mg-X(X=Y,Sn,Ca) binary systems[J]. Calphad,2015,48:27-34.
[37] KIM K H,LEE B J.Modified embedded-atom method interato-mic potentials for Mg-Nd and Mg-Pb binary systems[J].Calphad,2017,57:55-61.
[38] XU B,CAPOLUNGO L,RODNEY D.On the importance of prismatic/basal interfaces in the growth of {1012} twins in hexagonal close packed crystals[J].Scripta Materialia,2013,68(11):901-904.
[39] LECLERCQ L,CAPOLUNGO L,RODNEY D.Atomic-scale comparison between {1101} and {1102} twin growth mecha-nisms in magnesium[J].Materials Research Letters,2014,2(3):152-159.
[40] WANG J,BEYERLEIN I J, TOMÉ C N.An atomic and probabilistic perspective on twin nucleation in Mg[J].Scripta Materialia,2010,63(7):741-746.
[41] WANG J,HIRTH J P, TOMÉ C N.(1012) twinning nucleation mechanisms in hexagonal-close-packed crystals[J].Acta Materi-alia,2009,57(18):5521-5530.
[42] AGHABABAEI R,JOSHI S P.Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simul-ations[J].Acta Materialia,2014,69(5):326-342.
[43] XU H L,SU X M,YUAN G Y,et al.Primary and secondary modes of deformation twinning in HCP Mg based on atomistic simulations[J].Transactions of Nonferrous Metals Society of China,2014,24(12):3804-3809.
[44] KIM D H,EBRAHIMI F,MANUEL M V,et al.Grain-boundary activated pyramidal dislocations in nano-textured Mg by mole-cular dynamics simulation[J].Materials Science and Engin-eering:A,2011,528(16):5411-5420.
[45] TANG Y Z,JAAFAR A,AWADY E.Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals[J].Acta Materialia,2014,71:319-332.
[46] LUQUE A,GHAZISAEIDI M,CURTIN W A.Deformation modes in magnesium (0001) and(0111) single crystals:simulations versus experiments[J].Modelling and Simulation in Materials Science and Engineering,2013,21:045010.
[47] SOMEKAWA H,MUKAI T.Effect of grain boundary structures on grain boundary sliding in magnesium[J].Materials Letters,2012,76(1):32-35.
[48] KAREWAR S,GUPTA N,GROH S,et al.Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close pack-ed magnesium[J].Computational Materials Science,2017,126:252-264.
[49] KAREWAR S V,GUPTA N,CARO A,et al.A concentration dependent embedded atom method potential for the Mg-Li system[J].Computational Materials Science,2014,85:172-178.
[50] CARO A,CROWSON D A,CARO M.Classical many-body potential for concentrated alloys and the inversion of order in iron-chromium alloys[J].Physical Review Letters,2005,95(7):075702.
[51] SOMEKAWA H,MUKAI T.Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys[J].Computational Materials Science,2013,77(3):424-429.
[52] ZU Q,GUO Y F,XU S,et al.Molecular dynamics simulations of the orientation effect on the initial plastic deformation of magnesium single crystals[J].Acta Metallurgica Sinica,2016,29(3):301-312.
[53] LIAO M,LI B,HORSTEMEYER M F.Interaction between bas-al slip and a Mg17Al12 precipitate in magnesium[J].Metallurgical and Materials Transactions A,2014,45(8):534-539.
[54] JELINEK B,GROH S,HORSTEMEYER M F,et al.Modified embedded atom method potential for Al,Si,Mg,Cu,and Fe alloys[J].Physical Review B,2012,85:245102.