Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 71-76    DOI: 10.11868/j.issn.1001-4381.2017.001305
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
正极材料不同配比对锂硫电池性能的影响机理
闫时建, 郝豫宝, 郭锦, 张敏刚
太原科技大学 材料科学与工程学院 先进材料研究所, 太原 030024
Influence Mechanism of Cathode Material Mixture Ratio on Lithium-sulfur Battery Performance
YAN Shi-jian, HAO Yu-bao, GUO Jin, ZHANG Min-gang
Institute of Advanced Materials, School of Materials Science & Engineering, Taiyuan University of Science & Technology, Taiyuan 030024, China
全文: PDF(3053 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为研究正极材料中活性材料、导电剂、黏结剂配比对锂硫电池性能的影响,将升华硫与乙炔黑按质量比为7∶3球磨制得活性材料,然后将活性材料、导电剂、黏结剂按5种不同的质量配比制得不同的正极复合材料,观察结构和形貌并组装成电池测试性能。结果表明:7∶1∶2配比的电池在0.15C的放电倍率下,首次放电比容量最高达1019.0mAh/g,100次循环之后比容量达547.9mAh/g,容量保持率为53.7%,具有比较好的综合性能,其原因在于合理的配比使得该正极复合材料在介观上具有最佳的电子传导性,在宏观上具有足够的牢固性,机理分析对于其他微粉粘接改性也具有指导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫时建
郝豫宝
郭锦
张敏刚
关键词 锂硫电池正极材料配比导电性微粉粘接改性机理    
Abstract:To study the influence of the ratio of active material, conductive agent and binder on performance of lithium-sulfur battery, the cathode active material was prepared by ball milling sublimed sulfur and acetylene black with mass ratio of 7:3, cathode composite materials were prepared with five different proportions of active material, conductive agent and binder, then the structures and morphologies were observed and batteries were resembled and tested. Electrochemical tests show that the first discharge specific capacity of cathode material with proportion of 7:1:2 reaches 1019.0mAh/g in the current discharge rate of 0.15C, and after 100 cycles,the specific capacity reaches 547.9mAh/g with capacity retention rate of 53.7%, indicating the cathode material with this proportion is desirable, which is due to reasonable component ratio making this cathode composite material possess optimum mesoscopic electronic conductivity and macroscopic fastness. This mechanism can also be guidance for adhesion modification of other micro powders.
Key wordslithium-sulfur battery    cathode material mixture ratio    electronic conductivity    micro powder adhesion    modification mechanism
收稿日期: 2017-10-20      出版日期: 2018-11-19
中图分类号:  TB332  
  TM912  
基金资助: 
通讯作者: 张敏刚(1962-),男,教授,博士,主要从事能源材料的研究,联系地址:山西省太原市万柏林区窊流路66号太原科技大学材料科学与工程学院(040024),E-mail:am_lab@yeah.net     E-mail: am_lab@yeah.net
引用本文:   
闫时建, 郝豫宝, 郭锦, 张敏刚. 正极材料不同配比对锂硫电池性能的影响机理[J]. 材料工程, 2018, 46(11): 71-76.
YAN Shi-jian, HAO Yu-bao, GUO Jin, ZHANG Min-gang. Influence Mechanism of Cathode Material Mixture Ratio on Lithium-sulfur Battery Performance. Journal of Materials Engineering, 2018, 46(11): 71-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001305      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/71
[1] PRABHAKARAN K,JAMES J,PVITYRAN C.Surface modification of SiC powders by hydrolysed aluminum coating[J].Journal of the European Ceramic Society,2003,23(2):379-385.
[2] SUGIYAMA K,OGAWA T,SAITO N,et al.Surface characterization of titanium dioxide powder treated by the CH4-H2 plasma CVD method[J].Surface and Coatings Technology,2003,174:882-885.
[3] JESIONOWSKI T,KRYSZTAFKIEWICZ A.Influence of saline coupling agents on surface properties of precipitated silica[J].Applied Surface Science,2001,172(1):18-22.
[4] 邓凌峰,彭辉艳,覃昱焜,等.碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J].材料工程,2017,45(4):121-127. DENG L F,PENG H Y,QIN Y K,et al.Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J].Journal of Materials Engineering,2017,45(4):121-127.
[5] 赵雄伟,臧充光,焦清介,等.Cu-CF/EP复合材料导电与阻尼性能研究[J].材料工程,2017,45(9):45-51. ZHAO X W,ZANG C G,JIAO Q J,et al.Conductivity and damping properties of copper coated Cu-CF/EP composite[J].Journal of Materials Engineering,2017,45(9):45-51.
[6] 朱嫦娥,任丽,王立新,等.炭黑吸附聚合制备聚吡咯/炭黑导电复合材料[J].复合材料学报,2005,22(3):45-48. ZHU C E,REN L,WANG L X,et al.Preparation of polypyrrole/carbon black conducting composites by adsorption polymerization[J].Acta Materiae Compositae Sinica,2005,22(3):45-48.
[7] 刘露,戴永年,姚耀春.导电剂对锂离子电池性能的影响[J].材料导报,2007,21(增刊1):267-269. LIU L,DAI Y N,YAO Y C.Effect of conductive additives on the performance of lithium-ion batteries[J].Materials Review,2007,21(Suppl 1):267-269.
[8] 李林艳,崔晓兰,单忠强,等.不同粘结剂对锂-硫电池电化学性能的影响[J].功能材料,2014,45(11):11087-11090. LI L Y,CUI X L,SHAN Z Q,et al.Influence of diffident binder materials on the performance of lithium-sulfur batteries[J].Journal of Functional Materials,2014,45(11):11087-11090.
[9] 周矗,李合琴,乔恺,等.S含量对S/AB复合正极材料性能影响[J].电工材料,2014(4):12-14. ZHOU C,LI H Q,QIAO K,et al.Influences of sulfur content on properties of S/AB composite cathode materials[J].Electrical Engineering Materials,2014(4):12-14.
[10] 姚耀春,戴永年,任海伦,等.锂离子电池中正极添加剂配比的优化研究[J].材料导报,2004,18(2):89-91. YAO Y C,DAI Y N,REN H L.Optimized study on recipe of cathode additives of Li-ion battery[J].Materials Review,2004,18(2):89-91.
[11] 马利华,李丹丹,张胜利,等.锂硫电池硫/碳复合材料制备方法研究进展[J].电源技术,2015,139(2):432-434. MA L H,LI D D,ZHANG S L,et al.Research progress in preparation methods for lithium sulfur batteries sulfur/carbon composite material[J].Chinese Journal of Power Sources,2015,139(2):432-434.
[12] LI G C,HU J J,LI G R,et al.Sulfur/activated-conductive carbonblack composites as cathode materials for lithium/sulfur battery[J].Journal of Power Sources,2013,240:598-605.
[13] LIU Y,ZHAN H,ZHOU Y.Investigation of S/C composite synthesized by solvent exchange method[J].Electrochemical Acta,2012,70:241-247.
[14] AHN W,KIM K B,JUNG K N,et al.Synthesis and electrochemi-cal properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J].Journal of Power Sources,2012,202:394-399.
[15] 马萍,张宝宏,巩桂英,等.V2O5(TiO2)/S复合材料作锂电池正极的性能研究[J].电子元件与材料,2007, 26(8):42-45. MA P,ZHANG B H,GONG G Y,et al.Study on property of V2O5/S,TiO2/S composite materials as cathode for lithium ion batteries[J].Electronic Components and Materials,2007,26(8):42-45.
[16] 刁岩,谢凯,洪晓斌,等.Li-S电池硫正极性能衰减机理分析及研究现状概述[J].化学学报,2013,71(4):508-518. DIAO Y,XIE K,HONG X B,et al.Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery[J].Acta Chimica Sinica,2013,71(4):508-518.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 周怡然, 刘虎, 杨金华, 姜卓钰, 吕晓旭, 焦健. 熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理[J]. 材料工程, 2019, 47(6): 88-93.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[5] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[6] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[7] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[8] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[9] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
[10] 倪楠楠, 夏璐, 张文宇, 陈旭, 益小苏. 苎麻纤维布和玻璃纤维布混杂铺层复合材料的力学性能[J]. 材料工程, 2019, 47(2): 153-159.
[11] 王波, 吴亚波, 黄喜鹏, 潘文革, 成来飞. 2D-C/SiC复合材料面内剪切性能统计及强度B基准值[J]. 材料工程, 2019, 47(1): 131-138.
[12] 宋清华, 刘卫平, 肖军, 陈萍, 杨洋, 陈吉平. 热塑性复合材料自动铺放过程中红外加热技术研究[J]. 材料工程, 2019, 47(1): 77-83.
[13] 高海涛, 王建江, 李泽. 基于超材料设计的钡铁氧体吸波涂层研究[J]. 材料工程, 2019, 47(1): 70-76.
[14] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[15] 谭翔飞, 谭鹏达, 何宇廷, 冯宇, 安涛, 张天宇, 刘凯. 航空碳纤维增强树脂基复合材料加筋壁板吸湿行为[J]. 材料工程, 2018, 46(12): 61-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn