Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (8): 22-27    DOI: 10.11868/j.issn.1001-4381.2017.001307
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
氟化多壁碳纳米管作正极对锂/氟电池性能的影响
李旭, 孙晓刚(), 蔡满园, 王杰, 陈玮, 陈珑, 邱治文
南昌大学 机电工程学院, 南昌 330031
Effect of fluorinated multi-walled carbon nanotubes as cathode on performance of Li/CFx batteries
Xu LI, Xiao-gang SUN(), Man-yuan CAI, Jie WANG, Wei CHEN, Long CHEN, Zhi-wen QIU
College of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(3066 KB)   HTML ( 25 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过对多壁碳纳米管(MWCNTs)进行氟化改性,获得氟碳原子比分别为0.28(CF0.28),0.56(CF0.56),0.78(CF0.78)的氟化多壁碳纳米管。将氟化多壁碳纳米管作正极活性物质涂覆于铝箔,金属锂片为对极,组装成锂/氟化多壁碳纳米管(Li/CFx)一次纽扣电池。采用热重分析(TGA)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱分析(XPS)进行结构和性能表征,通过恒流放电检测电池的电化学性能。结果表明:活性物质为CF0.78的正极电极的电化学性能最佳,在电流密度为39mA/g时放电比容量达724mAh/g,同时出现了稳定的放电平台。在0.05C放电倍率时,3种电极的活性物质利用率分别达到73.4%,89.6%,92.9%。相比0.05C,2C放电倍率下的放电比容量衰减率分别为68.8%,34.1%,39.6%,表明提高氟化程度,能够降低放电比容量衰减率,虽CF0.78相对CF0.56的放电化容量衰减率有所上升,但在相同放电倍率时,其放电曲线稳定性是最好的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李旭
孙晓刚
蔡满园
王杰
陈玮
陈珑
邱治文
关键词 多壁碳纳米管氟化多壁碳纳米管锂/氟一次电池    
Abstract

Multiwalled carbon nanotubes(MWCNTs) were fluorinated to get the material of MWCNTs fluoride with different atomic ratio. The ratio of fluorine and carbon was 0.28(CF0.28), 0.56(CF0.56) and 0.78(CF0.78) respectively. The fluoride MWCNTs were used as cathode active material to coat on aluminum foil, lithium metal foil as counter electrode in Li/CFx batteries. The structures and properties were characterized by thermal gravimetric analyzer(TGA), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The electrochemical performance was tested by galvanostatic discharge test. The results show that the battery with CF0.78 has the best electrochemical performance. At the current density of 39mA/g, the battery displays high discharge specific capacity of 724mAh/g and appears with a more stable platform for the discharge process. At the current discharge rate of 0.05C, the utilization of three kinds of MWCNTs fluoride electrodes is 73.4%, 89.6%, 92.9%. When the discharge rate is 2C, batteries with three different MWCNTs fluoride have discharge specific capacity attenuation rate of 68.8%, 34.1%, and 39.6%. It indicates that the discharge specific capacity attenuation rate can be mitigated to a certain extent with the improved level of fluoridation. Although the discharge capacity attenuation rate of CF0.78 is higher than that of CF0.56, CF0.78 has the most stable discharge curve at the same discharge rate.

Key wordsmultiwall carbon nanotube    multiwall carbon nanotubes fluoride    lithium/fluoride primary battery
收稿日期: 2017-10-22      出版日期: 2019-08-22
中图分类号:  TM912.9  
基金资助:江西省科技厅科研项目(20142BBE50071)
作者简介: 孙晓刚(1957-), 男, 教授, 主要从事碳纳米管和锂离子电池方面的研究工作, 联系地址:江西省南昌市红谷滩新区学府大道999号南昌大学前湖校区机电工程学院(330038), E-mail:xiaogangsun@163.com
引用本文:   
李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
Xu LI, Xiao-gang SUN, Man-yuan CAI, Jie WANG, Wei CHEN, Long CHEN, Zhi-wen QIU. Effect of fluorinated multi-walled carbon nanotubes as cathode on performance of Li/CFx batteries. Journal of Materials Engineering, 2019, 47(8): 22-27.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001307      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/22
Fig.1  多壁碳纳米管石墨化处理前后TGA谱图
Fig.2  多壁碳纳米管氟化前后的SEM图
(a)氟化前; (b)CF0.78
Fig.3  多壁碳纳米管氟化前后的TEM图
(a)氟化前; (b)CF0.78
Fig.4  MWCNTs与CF0.28,CF0.56,CF0.78的XRD谱图
Fig.5  多壁碳纳米管和不同氟化程度的氟化多壁碳纳米管的XPS谱图(a)及C1s的局部放大图(b)
Fig.6  不同氟含量的锂/氟一次电池放电曲线
Fig.7  不同氟含量的锂/氟一次电池在不同放电倍率时的放电曲线
(a)CF0.28; (b)CF0.56; (c)CF0.78
Fig.8  锂/氟一次电池在放电前的EIS谱图
1 ⅡJIAMA S.Helical microtubules of graphitic carbon[J].Nature, 354: 56-58.
2 杨旭东, 陈亚军, 师春生, 等. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45 (9): 93- 100.
2 YANG X D , CHEN Y J , SHI C S , et al. Effect of ball-milling process on the microstructure and mechanical properties of in-situ synthesized carbon nanotube reinforced aluminum composites[J]. Journal of Materials Engineering, 2017, 45 (9): 93- 100.
3 AJAYAN , PULICKEL M , ZHOU O Z . Applications of carbon nanotubes[M]. Heidelberg, Berlin: Springer, 2001: 391- 425.
4 ENDO M , STRANO M S , AJAYAN P M . Potential applications of carbon nanotubes[J]. Topics in Applied Physics, 2007, 111 (5): 13- 61.
5 LIU X M , HUANG Z D , OH S W , et al. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries:a review[J]. Composites Science & Technology, 2012, 72 (2): 121- 144.
6 NIU C , SICHEL E K , HOCH R , et al. High power electroch-emical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters, 1997, 70 (11): 1480- 1482.
doi: 10.1063/1.118568
7 YOON S , LEE S , KIM S , et al. Carbon nanotube film anodes for flexible lithium ion batteries[J]. Journal of Power Sources, 2015, 279, 495- 501.
doi: 10.1016/j.jpowsour.2015.01.013
8 刘珍红, 孙晓刚, 陈珑, 等. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46 (1): 99- 105.
8 LIU Z H , SUN X G , CHEN L , et al. Performance of lithium ion batteries with carbon nanotube paper/nano silicon composite elec-trode[J]. Journal of Materials Engineering, 2018, 46 (1): 99- 105.
9 LI Y . The improved discharge performance of Li/CFx batteries by using multi-walled carbon nanotubes as conductive additive[J]. Journal of Power Sources, 2011, 196, 2246- 2250.
doi: 10.1016/j.jpowsour.2010.10.005
10 GONG C , XUE Z , WEN S , et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries[J]. Journal of Power Sources, 2016, 318, 93- 112.
doi: 10.1016/j.jpowsour.2016.04.008
11 董全峰, 郑明森, 金明钢, 等. 氟化石墨的电化学性能研究[J]. 高等学校化学学报, 2004, 25 (11): 2082- 2085.
doi: 10.3321/j.issn:0251-0790.2004.11.016
11 DONG Q F , ZHENG M S , JIN M G , et al. Study on electrochemical properties of graphite fluoride[J]. Chemical Journal of Chinese Universities, 2004, 25 (11): 2082- 2085.
doi: 10.3321/j.issn:0251-0790.2004.11.016
12 HANY P , YAZAMI R , HAMWI A . Low-temperature carbon fluoride for high power density lithium primary batteries[J]. Journal of Power Sources, 1997, 68 (2): 708- 710.
doi: 10.1016/S0378-7753(97)02642-6
13 ZHANG S S , FOSTER D , READ J . Carbothermal treatment for the improved discharge performance of primary Li/CFx battery[J]. Journal of Power Sources, 2009, 191 (2): 648- 652.
doi: 10.1016/j.jpowsour.2009.02.007
14 GREATBATCH W , HOLMES C F , TAKEUCHI E S , et al. Lithium/carbon monofluoride (Li/CFx):a new pacemaker batt-ery[J]. Pacing & Clinical Electrophysiology, 1996, 19 (11): 1836.
15 RANGASAMY E , LI J , SAHU G , et al. Pushing the theoretical limit of Li-CF(x) batteries:a tale of bifunctional electrolyte[J]. Journal of the American Chemical Society, 2014, 136 (19): 6874- 6877.
doi: 10.1021/ja5026358
16 LAM P , YAZAMI R . Physical characteristics and rate perfor-mance of (CFx)n (0.33x<0.66) in lithium batteries[J]. Journal of Power Sources, 2006, 153 (2): 354- 359.
doi: 10.1016/j.jpowsour.2005.05.022
17 ZHANG S S , FOSTER D , READ J . A low temperature electr-olyte for primary Li/CFx batteries[J]. Journal of Power Sources, 2009, 188 (2): 532- 537.
doi: 10.1016/j.jpowsour.2008.12.030
18 李瑀, 陈彦芳, 冯奕钰, 等. 氟化碳纳米管的制备方法及相关性质研究进展[J]. 中国科学:技术科学, 2010, (7): 727- 736.
18 LI Y , CHEN Y F , FENG Y Y , et al. Progress of synthesizing methods and properties of fluorinated carbon nanotubes[J]. Scientia Sinica (Technologica), 2010, (7): 727- 736.
19 黄萍, 刘志超, 卢嘉春, 等. 氟化多壁碳纳米管制备与电化学性能[J]. 材料保护, 2013, (增刊2): 56- 57.
19 HUANG P , LIU Z C , LU J C , et al. Structure and discharge performance of multi-walled carbon nanotube fluoride[J]. Materials Protection, 2013, (Suppl 2): 56- 57.
20 ROOT M J , DUMAS R , YAZAMI R , et al. The effect of carbon starting material on carbon fluoride synthesized at room temperature:characterization and electrochemistry[J]. Develo-pmental & Comparative Immunology, 2001, 148 (4): 247- 267.
21 TIAN Y , YUE H , GONG Z , et al. Enhanced electrochemical performance of fluorinated carbon nanotube as cathode for LiO2, primary batteries[J]. Electrochimica Acta, 2013, 90 (5): 186- 193.
22 JAYASINGHE R , THAPA A K , DHARMASENA R R , et al. Optimization of multi-walled carbon nanotube based CFx, electrodes for improved primary and secondary battery perfor-mances[J]. Journal of Power Sources, 2014, 253 (5): 404- 411.
23 ZHAO T , SHE S , JI X , et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode mate-rials[J]. Journal of Alloys & Compounds, 2017, 708, 500- 507.
24 ZHAO T , GUO S , JI X , et al. Three-dimensional heterost-ructured MnO2/graphene/carbon nanotube composite on Ni foam for binder-free supercapacitor electrode[J]. Fullerenes Nanotubes & Carbon Nanostructures, 2017, 25 (9): 391- 396.
25 ZHAO M K , JI X L , BI P , et al. In situ synthesis of interlinked three-dimensional graphene foam/polyaniline nanorod superca-pacitor[J]. Electrochimica Acta, 2017, 230, 342- 349.
doi: 10.1016/j.electacta.2017.02.021
[1] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[2] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[3] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[4] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[5] 马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
[6] 刘强, 柯黎明, 刘奋成, 黄春平. 多壁碳纳米管增强铝基复合材料的高温力学性能[J]. 材料工程, 2016, 44(4): 20-25.
[7] 代士维, 张乐天, 李俊, 乔新峰, 马跃. 蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响[J]. 材料工程, 2015, 43(10): 7-13.
[8] 郭伟玲, 李恩重, 王海斗, 杨大祥. MWCNTs催化Ru(bpy)32+阴极电致化学发光[J]. 材料工程, 2013, 0(12): 63-67,73.
[9] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[10] 杨春巍, 胡信国, 张亮, 戴长松. 多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响[J]. 材料工程, 2008, 0(7): 79-82,87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn