Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 126-133    DOI: 10.11868/j.issn.1001-4381.2017.001406
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Y含量对MgZn9YxZr0.5合金热裂敏感性的影响
贾东瑞, 王越, 刘正, 毛萍莉, 王峰, 王志
沈阳工业大学 材料科学与工程学院, 沈阳 110870
Effect of Y content on hot tearing susceptibility of MgZn9YxZr0.5 alloys
JIA Dong-rui, WANG Yue, LIU Zheng, MAO Ping-li, WANG Feng, WANG Zhi
School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(7115 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于Clyne-Davies模型,对MgZn9YxZr0.5x=1,2,4,6,质量分数/%,下同)合金热裂敏感性(CSC)进行预测;采用X射线衍射(XRD)和扫描电子显微镜(SEM)分别对MgZn9YxZr0.5合金的显微组织与断口区域形貌进行观察,并采用"T"型热裂模具测试系统,采集MgZn9YxZr0.5合金凝固收缩应力随温度(或时间)的变化曲线。结果表明:CSC预测值与裂纹体积实测值具有相同的变化趋势,其热裂敏感性从高到低的顺序是:MgZn9Y1Zr0.5 > MgZn9Y6Zr0.5 > MgZn9Y2Zr0.5 > MgZn9Y4Zr0.5;当w(Y)≤4%时,枝晶干涉点温度与热裂纹萌生温度随Y含量增加而降低,而当w(Y)=6%时,枝晶干涉点温度与热裂纹萌生温度随之升高。随Y含量不同,MgZn9YxZr0.5合金凝固过程中析出相类型、含量以及α-Mg枝晶倾向的改变被认为是影响晶界裂纹萌生、扩展和热裂的主要微观机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾东瑞
王越
刘正
毛萍莉
王峰
王志
关键词 MgZn9YxZr0.5热裂敏感性凝固收缩应力微观机制    
Abstract:Based on the Clyne-Davies model,the hot tearing susceptibility(CSC)of MgZn9YxZr0.5(x=1,2,4,6,mass fraction/%) was predicted.The microstructure and morphology of hot tearing regions of the alloys were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the curves of solidification shrinkage stress with temperature (or time) of MgZn9YxZr0.5 alloys based on the "T" type hot tearing permanent-mold were collected.The results demonstrate that the predicted values of CSC are consistent with that of measured values of crack volume.The hot tearing susceptibility of the alloys from high to low is:MgZn9Y1Zr0.5 > MgZn9Y6Zr0.5 > MgZn9Y2Zr0.5 > MgZn9Y4Zr0.5;the dendrite coherency temperature and the initial temperature of hot tearing decrease with the Y content increasing when w(Y) is not more than 4%.When w(Y) is 6%, the dendrite coherency temperature and the initial temperature of hot tearing increase.With the increase of Y content, the change of precipitation phase type, content and the dendrite tendency of α-Mg in the solidification process of MgZn9YxZr0.5 alloys is considered as the main micro-mechanism that affects crack initiation,propagation and hot tearing in grain boundary.
Key wordsMgZn9YxZr0.5    hot tearing susceptibility    solidification shrinkage stress    micro-mechanism
收稿日期: 2017-11-16      出版日期: 2019-07-19
中图分类号:  TG146.2+2  
通讯作者: 王越(1961-),女,副教授,主要从事高性能镁合金方面的研究,联系地址:辽宁省沈阳市经济技术开发区沈辽西路111号沈阳工业大学材料科学与工程学院(110870),ywang54321@126.com     E-mail: ywang54321@126.com
引用本文:   
贾东瑞, 王越, 刘正, 毛萍莉, 王峰, 王志. Y含量对MgZn9YxZr0.5合金热裂敏感性的影响[J]. 材料工程, 2019, 47(7): 126-133.
JIA Dong-rui, WANG Yue, LIU Zheng, MAO Ping-li, WANG Feng, WANG Zhi. Effect of Y content on hot tearing susceptibility of MgZn9YxZr0.5 alloys. Journal of Materials Engineering, 2019, 47(7): 126-133.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001406      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/126
[1] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002. LIU Z,ZHANG K,ZENG X Q.Theoretical basis and application of magnesium-based light alloy[M].Beijing:Mechanical Industry Press,2002.
[2] 苏再军,杨树忠,刘楚明,等.Zn对铸态Mg-Y-Nd-Zr合金组织和力学性能的影响[J].材料工程,2017,45(9):116-122. SU Z J,YANG S Z,LIU C M,et al.Effects of Zn on microstruc-ture and mechanical properties of as-cast Mg-Y-Nd-Zr alloys[J].Journal of Materials Engineering,2017,45(9):116-122.
[3] 曾小勤,史枭颖.稀土镁合金强韧性设计与开发[J].航空材料学报,2017,37(1):18-25. ZENG X Q,SHI X Y.Strengthening and toughening design and development of Mg-rare earth alloys[J].Journal of Aeronautical Materials,2017,37(1):18-25.
[4] 王博,刘正,毛萍莉,等.Sn对Mg-Al-Ca系合金热裂敏感性的影响[J].稀有金属,2016,40(7):647-653. WANG B,LIU Z,MAO P L,et al.Hot tearing susceptibility of Mg-Al-Ca alloy with different Sn additions[J].Chinese Journal of Rare Metals,2016,40(7):647-653.
[5] SONG J F,WANG Z,HUANG Y D,et al.Effect of Zn addition on hot tearing behavior of Mg-0.5Ca-xZn alloys[J].Materials & De-sign,2015,87:157-170.
[6] GUNDE P,SCHIFFL A,UGGOWITZER P J,et al.Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys[J].Materials Science and Engineering:A,2010,527(26):7074-7079.
[7] 王斌,易丹青,周玲伶,等.稀土元素Y和Nd对Mg-Zn-Zr系合金组织和性能的影响[J].金属热处理,2005,30(7):9-13. WANG B,YI D Q,ZHOU L L,et al.Influence of Y and Nd on microstructure and properties of Mg-Zn-Zr alloys[J].Heat Treat-ment of Metals,2005,30(7):9-13.
[8] WANG Z,LI Y Z,WANG F,et al.Hot tearing susceptibility of Mg-xZn-2Y alloys[J].Transactions of Nonferrous Metals Society of China,2016,26(12):3115-3122.
[9] ZHOU L,HUANG Y D,MAO P L,et al.Influence of composition on hot tearing in binary Mg-Zn alloys[J].International Journal of Cast Metals Research,2011,24(3/4):170-176.
[10] LIU Z,ZHANG S B,MAO P L,et al.Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys[J].Transactions of Nonfer-rous Metals Society of China,2014,24(4):907-914.
[11] FENG Y,MAO P L,LIU Z,et al.Hot tearing susceptibility of MgZn4.5YxZr0.5 alloys and mechanism[J].China Foundry,2016,13(3):159-165.
[12] GROBNER J,KOZLOV A,FANG X Y,et al.Phase equilibria and transformations in ternary Mg-rich Mg-Y-Zn alloys[J].Acta Materialia,2012,60(17):5948-5962.
[13] LUO S Q,TANG A T,PAN F S,et al.Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys[J].Transac-tions of Nonferrous Metals Society of China,2011,21(4):795-800.
[14] GROBNER J,SCHMID F R.Key issues in a thermodynamic Mg alloy database[J].Metallurgical and Materials Transactions A,2013,44(7):2918-2934.
[15] HOU D,LIANG S M,CHEN R,et al.Solidification behavior and grain size of sand casting Mg-Al-xZn alloys[J].Acta Metallu-rgica Sinica,2014,50(5):601-609.
[16] UPADHYA K G,STEFANESCU D M,LIEU K,et al.Compu-ter-aided cooling curve analysis,principles and applications in metal casting[J].AFS Transactions,1989,97:61-66.
[17] FARAHANY S,BAKHSHESHI-RAD H R,IDRIS M H,et al.In-situ thermal analysis and macroscopical characterization of Mg-xCa and Mg-xCa-xZn alloy systems[J].Thermochimica Acta,2012,527(1):180-189.
[18] CLYNE T W,DAVIES G J.The influence of composition on solidification cracking susceptibility in binary alloy systems[J].The British Foundryman,1981,74:65-73.
[19] CLYNE T W,DAVIES G J.A quantitative solidification cracking test for castings and an evaluation of cracking in aluminium-magnesium alloys[J].The British Foundryman,1975,68:238-244.
[20] LIANG S M,CHEN R S,BLANDIN J J,et al.Thermal analysis and solidification pathways of Mg-Al-Ca system alloys[J].Materials Science and Engineering:A,2008,480(1/2):365-372.
[21] FARAHANY S,NORDIN N A,OURDJINI A,et al.The sequ-ence of intermetallic formation and solidification pathway of an Al-13Mg-7Si-2Cu in-situ composite[J].Materials Characteriza-tion,2014,98:119-129.
[22] LIU Z,LIU L,ZHANG S B,et al.Investigations on hot tearing susceptibility and its mechanism of Mg-Zn-Y alloys[J].Materials Science Forum,2017,879:1164-1169.
[23] LEE J Y,KIM D H,LIM H K,et al.Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J].Materials Letters,2005,59(29/30):3801-3805.
[24] LI M Z,WANG Y Q,LI C,et al.Effects of neodymium rich rare earth elements on microstructure and mechanical properties of as cast AZ31 magnesium alloy[J].Materials Science and Technolo-gy,2011,27(7):1138-1142.
[25] HUANG Z H,LIANG S M,CHEN R S,et al.Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys[J].Journal of Alloys and Compounds,2009,468(1/2):170-178.
[1] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[2] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[3] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[4] 袁姣娜, 王建利, 杨忠, 郭永春, 李建平. 合金成分对Mg-Zn-Y合金准晶形貌和体积分数的影响[J]. 材料工程, 2019, 47(3): 116-122.
[5] 游国强, 郭伟, 张秀丽, 文恒玉, 沈鹭. 镁合金摩擦焊的研究进展[J]. 材料工程, 2018, 46(1): 141-148.
[6] 方志浩, 马程鹏, 管迎春, 周伟, 郑宏宇. 激光熔化镁合金凝固组织及腐蚀行为[J]. 材料工程, 2017, 45(12): 1-9.
[7] 唐甜, 张丁非, 孙静, 胡光山, 胥钧耀, 潘复生. Sn对时效态ZM61镁合金高温力学性能的影响[J]. 材料工程, 2016, 44(11): 9-15.
[8] 吕滨江, 彭建, 梁鹏, 王进. 冷却速率对Mg-4.4Zn-0.3Zr-0.4Y变形镁合金组织和性能的影响[J]. 材料工程, 2016, 44(9): 82-88.
[9] 王明华, 杜军. 微量Fe对Mg-3%Al合金碳质孕育衰退的影响[J]. 材料工程, 2016, 44(5): 54-58.
[10] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[11] 周冰, 康永林, 祁明凡, 张欢欢, 朱国明, 吴征洋. AZ91D镁合金强制对流流变压铸组织与性能[J]. 材料工程, 2014, 0(10): 1-5.
[12] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[13] 王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
[14] 汪清, 王敬丰, 黄崧, 李琳俊楠, 耿铁, 潘复生. 加工工艺对AZ61镁合金拉压不对称性的影响[J]. 材料工程, 2013, 0(11): 57-61,88.
[15] 杨少锋, 王再友. 压铸镁合金的研究进展及发展趋势[J]. 材料工程, 2013, 0(11): 81-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn