Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 39-45    DOI: 10.11868/j.issn.1001-4381.2017.001419
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB
王娟1,2, 王国宏1,2,3, 孙玲玲1,2
1. 湖北师范大学 污染物分析与资源化技术湖北省重点实验室, 湖北 黄石 435002;
2. 湖北师范大学 化学化工学院, 湖北 黄石 435002;
3. 湖北师范大学 先进材料研究院, 湖北 黄石 435002
Preparation of Ag2CO3/Ag/g-C3N4 Z-scheme Heterostructure and Photocatalytic Degradation of Rhodamine B Under Visible Light
WANG Juan1,2, WANG Guo-hong1,2,3, SUN Ling-ling1,2
1. Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, Hubei, China;
2. College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China;
3. Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, Hubei, China
全文: PDF(2386 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过煅烧处理和沉淀反应合成以Ag纳米粒子为电子媒介的Z-型光催化剂Ag2CO3/Ag/g-C3N4。在可见光照射下,降解RhB评价Ag2CO3/Ag/g-C3N4复合物的光催化活性。结果表明:Ag2CO3/Ag/g-C3N4样品显示出比纯Ag2CO3和g-C3N4更强的光催化活性,当g-C3N4与Ag2CO3/Ag质量比为20%时,复合物呈现出最好的光催化性能,这归因于在Ag2CO3和g-C3N4间形成的Z-型异质结构,其有效促进电子转移速率和光生电子-空穴的分离。Z-型异质结构扩展了可见光吸收波长范围(从450nm到670nm),这是由于Ag纳米粒子表面离子共振的结果。捕获实验证实,在光催化降解RhB反应中,·O2-和空穴h+是主要活性物质,·OH是次要活性物质,并提出了增强光催化活性的机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王娟
王国宏
孙玲玲
关键词 Ag2CO3/Ag/g-C3N4Z-型光催化剂可见光光催化活性    
Abstract:The highly efficient Z-scheme photocatalyst Ag2CO3/Ag/g-C3N4 with Ag nanoparticles, as an electron mediator, was fabricated by a simple calcinations-precipitation reaction. Photocatalytic experiments of the as-prepared samples were tested by the photocatalytic oxidation degradation of RhB aqueous solution. The results show that Ag2CO3/Ag/g-C3N4 composites exhibit enhanced photocatalytic activity, compared with Ag2CO3 and g-C3N4. The composites exhibit the highest photocatalytic performance, when the mass ratio of g-C3N4 to Ag2CO3/Ag is 20%,which is attributed to the formation of Z-scheme heterojunction structure between Ag2CO3 and g-C3N4, thus accelerating electron transfer rate and separating efficiently the photo-generated electron-hole pairs. Meanwhile, the Z-scheme heterojunction structures extend the wavelength range of visible light absorption (from 450nm to 670nm) due to the surface plasma resonance (SPR) of Ag nanoparticles. The trapping experiment results confirm that·O2- and h+ are main active species,·OH plays a relatively minor role in the decomposition of RhB. A possible mechanism for enhanced photocatalytic activity of Ag2CO3/Ag/g-C3N4 heterojunction photocatalyst is proposed.
Key wordsAg2CO3/Ag/g-C3N4    Z-scheme photocatalyst    visible light    photocatalytic activity
收稿日期: 2017-11-16      出版日期: 2018-09-19
中图分类号:  O643  
通讯作者: 王国宏(1968-),男,教授,博士,主要从事半导体材料的制备及应用方面的研究工作,联系地址:湖北省黄石市磁湖路11号湖北师范大学化学化工学院(435002),E-mail:wanggh2003@163.com     E-mail: wanggh2003@163.com
引用本文:   
王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
WANG Juan, WANG Guo-hong, SUN Ling-ling. Preparation of Ag2CO3/Ag/g-C3N4 Z-scheme Heterostructure and Photocatalytic Degradation of Rhodamine B Under Visible Light. Journal of Materials Engineering, 2018, 46(9): 39-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001419      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/39
[1] RAN J R,YU J G,JARONIEC M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation[J]. Green Chemistry,2011,13:2708-2713.
[2] 刘欣伟,陈勇,陈昌兵,等. N掺杂纳米TiO2/电气石复合材料的制备及其光催化性能[J]. 材料工程,2016,44(6):104-109. LIU X W,CHEN Y,CHEN C B,et al. Preparation and photocatalytic activity of nitrogen-doped nano TiO2/tourmaline composites[J]. Journal of Materials Engineering,2016,44(6):104-109.
[3] 刘阳龙,郑玉婴,曹宁宁, 等. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程,2017,45(10):12-17. LIU Y L,ZHENG Y Y,CAO N N,et al. Synthesis and photocatalytic activity of iron doped CdS by hydrothermal method[J]. Journal of Materials Engineering,2017,45(10):12-17.
[4] 赵燕茹,马建中,刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程,2017,45(6):129-137. ZHAO Y R,MA J Z,LIU J L. Research progress on visible-light responding ZnO-based nanocomposite photocatalyst[J]. Journal of Materials Engineering,2017,45(6):129-137.
[5] YU J G,YU X X,HUANG B B,et al. Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres[J]. Crystal Growth Design,2009,9(3):1474-1480.
[6] LIU Z F,ZHAO Z G,MIYAUCHI M. Efficient visible light active CaFe2O4/WO3 based composite photocatalysts:effect of interfacial modification[J]. Journal of Physical Chemistry C,2009,113:17132-17137.
[7] HE Y M,CAI J,LI T T,et al. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation[J]. Chemical Engineering Journal,2013,215/216:721-730.
[8] LI T T,ZHAO L H,HE Y M,et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B:Environmental,2013,129:255-263.
[9] SONG Z,HE Y Q. Novel AgCl/Ag/AgFeO2 Z-scheme heterostructure photocatalyst with enhanced photocatalytic and stability under visible light[J]. Applied Surface Science,2017,420:911-918.
[10] GONG Y,QUAN X,YU H T,et al. Synthesis of Z-scheme Ag2CrO4/Ag/g-C3N4 composite with enhanced visible-light photocatalytic activity for 2,4-dichlorophenol degradation[J]. Applied Catalysis B:Environmental,2017,219:439-449.
[11] LOW J X,CHENG B,YU J G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2:a review[J]. Applied Surface Science,2017,392:658-686.
[12] DAI G P,YU J G,LIU G. A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity[J]. Journal of Physical Chemistry C,2012,116:15519-15524.
[13] YANG X F,LI R,WANG Y Q,et al. Solvent-induced controllable synthesis of recyclable Ag2CO3 catalysts with enhanced visible light photocatalytic activity[J]. Ceramics International,2016,42:13411-13420.
[14] YU C L,WEI L F,CHEN J C,et al. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3[J]. Industrial & Engineering Chemistry Research,2014,53:5759-5766.
[15] DAI G P,LIU S Q,LIANG Y,et al. Fabrication of a nano-sized Ag2CO3/reduced graphene oxide photocatalyst with enhanced visible-light photocatalytic activity and stability[J]. RSC Advances,2014,4(65):34226-34231.
[16] CHEN L,YANG S D,HAO B,et al. Preparation of fiber-based plasmonic photocatalyst and its photocatalytic performance under the visible light[J]. Applied Catalysis B:Environmental,2015,166/167:287-294.
[17] WANG X C,MAEDA K,THOMAS A,et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8:76-80.
[18] WANG X C,BLECHERT S,ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis,2012,2(8):1596-1606.
[19] YAN S C,LI Z S,ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir,2009,25:10397-10401.
[20] XU H,SONG Y X,SONG Y H,et al. Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants[J]. RSC Advances,2014,4(65):34539-34547.
[21] HAO R R,WANG G H,TANG H,et al. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity[J]. Applied Catalysis B:Environmental,2016,187:47-58.
[22] TONDA S,KUMAR S,SHANKER V. In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation[J]. Journal of Environmental Chemical Engineering,2015,3(2):852-861.
[23] YU J G,YU H G,CHENG B,et al. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment[J]. Journal of Molecular Catalysis A:Chemical,2006,253:112-118.
[24] LIANG Q H,SHI Y,MA W J,et al. Large-scale preparation and morphology-dependent photodegradation performances of monodispersed AgBr crystals[J]. Applied Catalysis A:General,2013,455:199-205.
[25] HU C,LAN Y Q,QU J H,et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria[J]. Journal of Physical Chemistry B,2006,110:4066-4072.
[26] PRON A,REGHU R R,RYBAKIEWICZ R,et al. Triarylamine substituted arylene bisimides as solution processable organic semiconductors for field effect transistors. effect of substituent position on their spectroscopic, electrochemical, structural, and electrical transport properties[J]. Journal of Physical Chemistry C,2011,115:15008-15017.
[27] RESTA V,LAERA A M,PISCOPIELLO E,et al. Synthesis of CdS/TiO2 nanocomposites by using cadmium thiolate derivatives as unimolecular precursors[J]. Physica Status Solidi A,2010,207:1631-1635.
[28] KONG L,JIANG Z,LAI H H,et al. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts[J]. Journal of Catalysis,2012,293:116-125.
[29] XU M,HAN L,DONG S J. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity[J]. ACS Applied Materials & Interfaces,2013,5(23):12533-12540.
[1] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[2] 周锋, 任向红, 刘建友, 刘嫔. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19.
[3] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[4] 王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
[5] 鲍艳, 张永辉, 马建中. 溶液法制备ZnO纳米阵列的影响因素及光催化活性[J]. 材料工程, 2015, 43(8): 19-24.
[6] 曹文斌, 许军娜, 刘文秀, 孙芃, 张欣. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程, 2015, 43(3): 83-90.
[7] 赵宏生, 郭子斌, 李自强, 张凯红. 氮掺杂TiO2纳米粉体的制备及其可见光催化性能[J]. 材料工程, 2011, 0(3): 16-19,90.
[8] 王振华, 主沉浮, 董厚欢, 蔡元兴. 氮、铅改性二氧化钛光催化活性的研究[J]. 材料工程, 2008, 0(5): 66-70.
[9] 刘平, 杨军红. 数字化技术在铁基合金铜元素可见光谱分析中的应用[J]. 材料工程, 2008, 0(12): 78-80.
[10] 刘平, 杨军红. 镍基合金钴元素可见光谱数字化分析技术研究[J]. 材料工程, 2008, 0(11): 46-48.
[11] 郑旭煦, 於煌, 殷钟意, 方明建, 侯苛山, 李小红. N掺杂纳米TiO2在4-氯苯酚中的可见光催化活性及动力学研究[J]. 材料工程, 2008, 0(10): 39-42.
[12] 杜雯, 冶银平, 李红轩, 崔海霞. TiO2纳米薄膜的制备及其紫外-可见光谱研究[J]. 材料工程, 2008, 0(10): 261-264.
[13] 彭思, 严华, 刘善堂. PVP在水相金纳米粒子表面吸附过程的研究[J]. 材料工程, 2008, 0(10): 353-355.
[14] 邱成军, 曹茂盛, 张辉军, 刘红梅, 田风军, 刘鑫. 磁控溅射制备掺银TiO2薄膜的光催化特性研究[J]. 材料工程, 2005, 0(10): 35-37,46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn