Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (4): 39-46    DOI: 10.11868/j.issn.1001-4381.2017.001420
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
太阳辐照对芳纶纤维及其复合材料性能的影响
李亚锋1,2, 礼嵩明1,2, 黑艳伟1,2, 邢丽英1,2,*(), 陈祥宝2
1 中航工业复合材料技术中心, 北京 101300
2 中国航发北京航空材料研究院 先进复合材料重点实验室, 北京 100095
Effect of solar radiation on the properties of aramid fibers and composites
Ya-feng LI1,2, Song-ming LI1,2, Yan-wei HEI1,2, Li-ying XING1,2,*(), Xiang-bao CHEN2
1 AVIC Composite Technology Center, Beijing 101300, China
2 Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6638 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

选择K49和F-Ⅲ两种芳纶纤维及其5224A环氧树脂基复合材料为研究对象,以单丝拉伸强度、FTIR、DSC、SEM、复合材料力学性能和介电性能作为表征手段,研究太阳辐照对芳纶纤维的结构性能以及芳纶/环氧复合材料的结构透波性能的影响作用。结果表明:K49在辐照过程中表现出显著的自我屏蔽效应,400h的强度保持率为82%,F-Ⅲ未观察到明显的自我屏蔽效应,强度保持率为50%。辐照前后的FTIR,XPS,DSC,SEM结果证明纤维表层出现了降解,氢键破坏与结晶度下降是引起纤维性能下降的主要原因。太阳辐照前后复合材料的性能测试结果证明辐照对材料的性能无明显影响,辐照后复合材料的弯曲、层间剪切和介电性能基本无变化,拉伸强度略有升高,压缩强度轻微下降,K49/5224A的压缩强度下降了11.8%,F-Ⅲ/5224A的压缩强度下降了6.6%,这主要是由于太阳辐照老化仅引起复合材料表面树脂基体轻微降解所造成的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚锋
礼嵩明
黑艳伟
邢丽英
陈祥宝
关键词 芳纶纤维复合材料太阳辐照力学性能介电性能    
Abstract

K49 and F-Ⅲ two kinds of different structure aramid fibers and their 5224A epoxy matrix composites were selected. The tension strength of single fiber, FTIR, XPS, DSC, SEM, mechanical and dielectrical properties was used to characterize the physicochemical properties of fibers and structure/wave-transmitting properties of composites. It is found that different fibers result in different changes under the same solar radiation condition. The obvious "self-shield" phenomenon is observed in K49 fibers, but there's no proof that F-Ⅲ has the same ability. A tension strength conservation rate of 82% is obtained after 400 hours solar radiation. F-Ⅲ fibers, by contrast, are sensitive to solar radiation and a conservation rate of 50% is obtained at the same condition. The decreased tension strength is due to physicochemical degradation on the surface of the fibers and the decrease of crystallinity degree. It is proved that solar radiation has no obvious effect on the properties of composites. The flexibility, ILSS and dielectric properties has little change. The tensile strength is slightly improved, and the compression strength is slightly decreased. A decrease of 11.8% is obse-rved on K49/5224A composites and 6.6% for that of F-Ⅲ/5224A. It is because of that the degrad-ation occurred on the surface of composites.

Key wordsaramid fiber    composites    solar radiation    mechanical property    dielectric property
收稿日期: 2017-11-16      出版日期: 2019-04-19
中图分类号:  TB332  
基金资助:国家973计划资助项目(613245)
通讯作者: 邢丽英     E-mail: vcd4321@sina.com
作者简介: 邢丽英(1965-), 女, 研究员, 博士, 研究方向为结构功能复合材料, 联系地址:北京81信箱3分箱(100095), E-mail:vcd4321@sina.com
引用本文:   
李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
Ya-feng LI, Song-ming LI, Yan-wei HEI, Li-ying XING, Xiang-bao CHEN. Effect of solar radiation on the properties of aramid fibers and composites. Journal of Materials Engineering, 2019, 47(4): 39-46.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001420      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/39
Spectra λ/μm Radiation intensity/(W·m-2) Allowable deviation/%
Ultraviolet
radiation
0.28-0.32
0.32-0.40
5
63
±35
±25
Visible light 0.40-0.78 560 ±10
Infrared 0.78-3.00 492 ±20
Table 1  光谱能量分布
Fig.1  芳纶纤维的拉伸强度变化 (a)K49;(b)F-Ⅲ
Absorption peak/cm-1 Functional group Absorption peak/
cm-1
Functional group
3320 N—H stretching vibration 1311 C—N stretching and N—H bending vibrations
1642 C=O stretching vibration,aramid absorption band Ⅰ 1255 Mixed C—N stretching and N—H bending vibrations,aramid absorption band Ⅲ
1542 Combination of N—H deformation and C—N stretching vibrations,aramid absorption band Ⅱ 1111 C—H in-plane deformation of benzene ring
1513 C—C stretching vibration of benzene ring 824 1, 4-disubstituded, C—H wagging of benzene ring
1410 C—H in-plane bending deformation of benzene ring 718 N—H wagging
Table 2  芳纶纤维特征官能团红外吸收峰位置
Fig.2  太阳辐照前后K49芳纶纤维的FTIR谱图
Fig.3  太阳辐照前后F-Ⅲ芳纶纤维的FTIR谱图
Sample Area fraction of
C—C/%
(284.7±0.1)eV
Area fraction of
—C—N— & —C—O—/%
(286.4±0.1)eV
Area fraction of
—C=O/%
(288.6±0.1)eV
Area fraction of
—O—C=O/%
(289.0±0.1)eV
K49 68.33 19.60 12.08
K49-400h 61.34 25.80 6.69 6.17
F-Ⅲ 72.56 21.85 5.59
F-Ⅲ-400h 66.92 23.44 3.86 5.78
Table 3  芳纶纤维表面官能团信息
Sample Initial temperature/℃ Final temperature/℃ Peak width/℃ Peak temperature/℃ Endothermic peak area/(J·g-1) Content rate of peak area/%
K49 529.6 589.6 60.0 578.0 460.3
K49-400h 531.0 588.2 57.2 580.5 425.1 92.3
F-Ⅲ 501.3 577.6 76.3 538.7 273.2
F-Ⅲ-400h 501.4 573.7 72.3 540.5 223.3 81.7
Table 4  DSC曲线特性参数
Fig.4  K49纤维辐照前后的SEM照片(a)0h;(b), (c)400h
Fig.5  F-Ⅲ纤维太阳辐照前后的SEM照片 (a)0h;(b), (c)400h
Sample Tension strength Compression strength Flexibility strength ILSS
σt/MPa Cv/% Retention rate/% σc/MPa Cv/% Retention rate/% σf/MPa Cv/% Retention rate/% τs/MPa Cv/% Retention rate/%
K49/5224A 1197 5.18 - 254 1.59 - 770 0.91 - 78.8 0.57 -
K49/5224A-200h 1303 6.17 108.9 224 8.48 88.2 844 1.64 109.6 75.2 0.38 95.4
F-Ⅲ/5224A 2067 6.06 - 271 7.40 - 825 3.13 - 74.0 2.59 -
F-Ⅲ/5224A-200h 2158 0.52 104.4 253 8.12 93.4 796 2.42 96.5 74.7 2.43 100.9
Table 5  复合材料的力学性能
Fig.6  复合材料太阳辐照老化前后的SEM照片
(a)辐照前; (b)辐照后
Sample 0h 200h
Dielectric constant tanδ Dielectric constant tanδ
K49/5224A 4.10 0.0179 4.14 0.0182
F-Ⅲ/5224A 4.07 0.0168 4.15 0.0169
5224A 3.31 0.0268 3.40 0.0291
Table 6  复合材料的常温介电性能
1 RABEK J F . Photodegradation of polymers:physical charact-eristics and applications[M]. Springer-Verlag: Berlin, 1996: 98- 107.
2 ZHAO G , LIU B , WANG Q , et al. The effect of the addition of talc on tribological properties of aramid fiber-reinforced polyimide composites under high vacuum, ultraviolet or atomic oxygen environment[J]. Surface & Interface Analysis, 2013, 45 (2): 605- 611.
3 欧迎春, 马晓娜, 张延芳, 等. 紫外辐照下透明聚氨酯胶片老化机理[J]. 航空材料学报, 2017, 37 (1): 93- 98.
3 OU Y C , MA X N , ZHANG Y F , et al. Degradation mechanisms of transparent polyurethane interlayer under UV irradiation[J]. Journal of Aeronautical Materials, 2017, 37 (1): 93- 98.
4 SAID M A , DING W C , GUPTA A , et al. Investigation of ultra violet (UV) resistance for high strength fibers[J]. Advances in Space Research, 2006, 37 (11): 2052- 2058.
doi: 10.1016/j.asr.2005.04.098
5 KELLY M B , SEBASTIAN M S , MEGGAN K . The effects of environmental exposure on the optical, physical, and chemical properties of manufactured fibers of natural origin[J]. Journal of Forensic Sciences, 2016, 61 (1): 1- 13.
6 DAVIS R , CHIN J , LIN C C , et al. Accelerated weathering of polyaramid and polybenzimidazole fire fighter protective clothing fabrics[J]. Polymer Degradation&Stability, 2010, 95 (9): 1642- 1654.
7 LI K , LI L , QIN J Q , et al. A facile method to enhance UV stability of PBIA fibers with intense fluorescence emission by forming complex with hydrogen chloride on the fibers surface[J]. Polymer Degradation and Stability, 2016, 128 (6): 278- 285.
8 ZHANG H P , ZHANG J C , CHEN J Y , et al. Effect s of solar UV irradiation on the tensile properties and structure of PPTA fiber[J]. Polymer Degradation and Stability, 2006, 91 (11): 2761- 2767.
doi: 10.1016/j.polymdegradstab.2006.03.025
9 刘晓艳, 于伟东. 几种高性能芳纶纤维的耐光性评价[J]. 东华大学学报(自然科学版), 2007, 33 (1): 96- 100.
doi: 10.3969/j.issn.1671-0444.2007.01.021
9 LIU X Y , YU W D . Investigation on photodegradation of high performance aramid fibers[J]. Journal of Donghua University(Natural Science), 2007, 33 (1): 96- 100.
doi: 10.3969/j.issn.1671-0444.2007.01.021
10 张娜, 杨胜林, 金俊弘, 等. 可溶性聚酰亚胺涂覆PBO纤维的抗紫外老化性能[J]. 东华大学学报(自然科学版), 2012, 38 (6): 650- 654.
doi: 10.3969/j.issn.1671-0444.2012.06.003
10 ZHANG N , YANG S L , JIN J H , et al. Anti-ultraviolet aging properties of poly(p-phenylene benzobisoxazole) fiber coated with soluble polyimide[J]. Journal of Donghua University(Natural Science), 2012, 38 (6): 650- 654.
doi: 10.3969/j.issn.1671-0444.2012.06.003
11 梁晶晶, 张慧茹, 孙晋良, 等. 芳香族聚酰胺织物抗紫外老化的研究[J]. 合成纤维, 2011, (3): 1- 4.
11 LIANG J J , ZHANG H R , SUN J L , et al. Research on UV-aging resistance of aramid fabrics[J]. Synthetic Fiber in China, 2011, (3): 1- 4.
12 邢哲, 夏延致, 王川. 耐紫外线芳1313的制备及力学性能研究[J]. 陕西科技大学学报, 2007, 25 (5): 67- 70.
doi: 10.3969/j.issn.1000-5811.2007.05.016
12 XING Z , XIA Y Z , WANG C . Preparation and mechanical property research of the proof ultraviolet radiation poly-m-phenyleneisophthalamide[J]. Journal of Shaanxi University of Science and Technology, 2007, 25 (5): 67- 70.
doi: 10.3969/j.issn.1000-5811.2007.05.016
13 石增强, 潘亮, 阳键红. ARMOS纤维的紫外老化[J]. 复合材料学报, 2009, 26 (2): 107- 112.
doi: 10.3321/j.issn:1000-3851.2009.02.019
13 SHI Z Q , PAN L , YANG J H . Ultraviolet aging of ARMOS fiber[J]. Acta Materiae Compositae Sinica, 2009, 26 (2): 107- 112.
doi: 10.3321/j.issn:1000-3851.2009.02.019
14 LIPIKA G , MOHAMMAD H F , HIROSHI K , et al. Synerg-istic effect of hyperthermal atomic oxygen beam and vacuum ultr-aviolet radiation exposures on the mechanical degradation of high-modulus aramid fibers[J]. Polymer, 2006, 47 (19): 6836- 6842.
doi: 10.1016/j.polymer.2006.07.029
15 ZHANG C H , HUANG Y D , YUAN W J , et al. UV aging resistance properties of PBO fiber coated with nano-ZnO hybrid sizing[J]. Journal of Applied Polymer Science, 2011, 120 (4): 2468- 2476.
doi: 10.1002/app.33461
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[3] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[4] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[5] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[6] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[7] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[8] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[9] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[10] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[11] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[12] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[13] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[14] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[15] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn