1 AVIC Composite Technology Center, Beijing 101300, China 2 Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
K49 and F-Ⅲ two kinds of different structure aramid fibers and their 5224A epoxy matrix composites were selected. The tension strength of single fiber, FTIR, XPS, DSC, SEM, mechanical and dielectrical properties was used to characterize the physicochemical properties of fibers and structure/wave-transmitting properties of composites. It is found that different fibers result in different changes under the same solar radiation condition. The obvious "self-shield" phenomenon is observed in K49 fibers, but there's no proof that F-Ⅲ has the same ability. A tension strength conservation rate of 82% is obtained after 400 hours solar radiation. F-Ⅲ fibers, by contrast, are sensitive to solar radiation and a conservation rate of 50% is obtained at the same condition. The decreased tension strength is due to physicochemical degradation on the surface of the fibers and the decrease of crystallinity degree. It is proved that solar radiation has no obvious effect on the properties of composites. The flexibility, ILSS and dielectric properties has little change. The tensile strength is slightly improved, and the compression strength is slightly decreased. A decrease of 11.8% is obse-rved on K49/5224A composites and 6.6% for that of F-Ⅲ/5224A. It is because of that the degrad-ation occurred on the surface of composites.
Mixed C—N stretching and N—H bending vibrations,aramid absorption band Ⅲ
1542
Combination of N—H deformation and C—N stretching vibrations,aramid absorption band Ⅱ
1111
C—H in-plane deformation of benzene ring
1513
C—C stretching vibration of benzene ring
824
1, 4-disubstituded, C—H wagging of benzene ring
1410
C—H in-plane bending deformation of benzene ring
718
N—H wagging
Table 2 芳纶纤维特征官能团红外吸收峰位置
Fig.2 太阳辐照前后K49芳纶纤维的FTIR谱图
Fig.3 太阳辐照前后F-Ⅲ芳纶纤维的FTIR谱图
Sample
Area fraction of C—C/% (284.7±0.1)eV
Area fraction of —C—N— & —C—O—/% (286.4±0.1)eV
Area fraction of —C=O/% (288.6±0.1)eV
Area fraction of —O—C=O/% (289.0±0.1)eV
K49
68.33
19.60
12.08
K49-400h
61.34
25.80
6.69
6.17
F-Ⅲ
72.56
21.85
5.59
F-Ⅲ-400h
66.92
23.44
3.86
5.78
Table 3 芳纶纤维表面官能团信息
Sample
Initial temperature/℃
Final temperature/℃
Peak width/℃
Peak temperature/℃
Endothermic peak area/(J·g-1)
Content rate of peak area/%
K49
529.6
589.6
60.0
578.0
460.3
K49-400h
531.0
588.2
57.2
580.5
425.1
92.3
F-Ⅲ
501.3
577.6
76.3
538.7
273.2
F-Ⅲ-400h
501.4
573.7
72.3
540.5
223.3
81.7
Table 4 DSC曲线特性参数
Fig.4 K49纤维辐照前后的SEM照片(a)0h;(b), (c)400h
Fig.5 F-Ⅲ纤维太阳辐照前后的SEM照片 (a)0h;(b), (c)400h
Sample
Tension strength
Compression strength
Flexibility strength
ILSS
σt/MPa
Cv/%
Retention rate/%
σc/MPa
Cv/%
Retention rate/%
σf/MPa
Cv/%
Retention rate/%
τs/MPa
Cv/%
Retention rate/%
K49/5224A
1197
5.18
-
254
1.59
-
770
0.91
-
78.8
0.57
-
K49/5224A-200h
1303
6.17
108.9
224
8.48
88.2
844
1.64
109.6
75.2
0.38
95.4
F-Ⅲ/5224A
2067
6.06
-
271
7.40
-
825
3.13
-
74.0
2.59
-
F-Ⅲ/5224A-200h
2158
0.52
104.4
253
8.12
93.4
796
2.42
96.5
74.7
2.43
100.9
Table 5 复合材料的力学性能
Fig.6 复合材料太阳辐照老化前后的SEM照片 (a)辐照前; (b)辐照后
Sample
0h
200h
Dielectric constant
tanδ
Dielectric constant
tanδ
K49/5224A
4.10
0.0179
4.14
0.0182
F-Ⅲ/5224A
4.07
0.0168
4.15
0.0169
5224A
3.31
0.0268
3.40
0.0291
Table 6 复合材料的常温介电性能
1
RABEK J F . Photodegradation of polymers:physical charact-eristics and applications[M]. Springer-Verlag: Berlin, 1996: 98- 107.
2
ZHAO G , LIU B , WANG Q , et al. The effect of the addition of talc on tribological properties of aramid fiber-reinforced polyimide composites under high vacuum, ultraviolet or atomic oxygen environment[J]. Surface & Interface Analysis, 2013, 45 (2): 605- 611.
OU Y C , MA X N , ZHANG Y F , et al. Degradation mechanisms of transparent polyurethane interlayer under UV irradiation[J]. Journal of Aeronautical Materials, 2017, 37 (1): 93- 98.
4
SAID M A , DING W C , GUPTA A , et al. Investigation of ultra violet (UV) resistance for high strength fibers[J]. Advances in Space Research, 2006, 37 (11): 2052- 2058.
doi: 10.1016/j.asr.2005.04.098
5
KELLY M B , SEBASTIAN M S , MEGGAN K . The effects of environmental exposure on the optical, physical, and chemical properties of manufactured fibers of natural origin[J]. Journal of Forensic Sciences, 2016, 61 (1): 1- 13.
6
DAVIS R , CHIN J , LIN C C , et al. Accelerated weathering of polyaramid and polybenzimidazole fire fighter protective clothing fabrics[J]. Polymer Degradation&Stability, 2010, 95 (9): 1642- 1654.
7
LI K , LI L , QIN J Q , et al. A facile method to enhance UV stability of PBIA fibers with intense fluorescence emission by forming complex with hydrogen chloride on the fibers surface[J]. Polymer Degradation and Stability, 2016, 128 (6): 278- 285.
8
ZHANG H P , ZHANG J C , CHEN J Y , et al. Effect s of solar UV irradiation on the tensile properties and structure of PPTA fiber[J]. Polymer Degradation and Stability, 2006, 91 (11): 2761- 2767.
doi: 10.1016/j.polymdegradstab.2006.03.025
LIU X Y , YU W D . Investigation on photodegradation of high performance aramid fibers[J]. Journal of Donghua University(Natural Science), 2007, 33 (1): 96- 100.
doi: 10.3969/j.issn.1671-0444.2007.01.021
ZHANG N , YANG S L , JIN J H , et al. Anti-ultraviolet aging properties of poly(p-phenylene benzobisoxazole) fiber coated with soluble polyimide[J]. Journal of Donghua University(Natural Science), 2012, 38 (6): 650- 654.
doi: 10.3969/j.issn.1671-0444.2012.06.003
XING Z , XIA Y Z , WANG C . Preparation and mechanical property research of the proof ultraviolet radiation poly-m-phenyleneisophthalamide[J]. Journal of Shaanxi University of Science and Technology, 2007, 25 (5): 67- 70.
doi: 10.3969/j.issn.1000-5811.2007.05.016
SHI Z Q , PAN L , YANG J H . Ultraviolet aging of ARMOS fiber[J]. Acta Materiae Compositae Sinica, 2009, 26 (2): 107- 112.
doi: 10.3321/j.issn:1000-3851.2009.02.019
14
LIPIKA G , MOHAMMAD H F , HIROSHI K , et al. Synerg-istic effect of hyperthermal atomic oxygen beam and vacuum ultr-aviolet radiation exposures on the mechanical degradation of high-modulus aramid fibers[J]. Polymer, 2006, 47 (19): 6836- 6842.
doi: 10.1016/j.polymer.2006.07.029
15
ZHANG C H , HUANG Y D , YUAN W J , et al. UV aging resistance properties of PBO fiber coated with nano-ZnO hybrid sizing[J]. Journal of Applied Polymer Science, 2011, 120 (4): 2468- 2476.
doi: 10.1002/app.33461