Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 70-77    DOI: 10.11868/j.issn.1001-4381.2017.001427
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
原位聚合改性纳米层状黏土/脂肪族聚酯嵌段共聚物复合材料的制备与性能
毛龙1,2, 刘跃军1,2, 姚进2, 吴慧青1, 白永康3
1. 厦门理工学院 福建省功能材料及应用重点实验室, 福建 厦门 361024;
2. 湖南工业大学 先进包装材料与技术湖南省重点实验室, 湖南 株洲 412007;
3. 西安交通大学 高分子化工研究所, 西安 710049
Synthesis and Properties of Aliphatic Polyester Block Copolymers Filled with Nano Layered Clay Prepared by In-situ Graft Polymerization
MAO Long1,2, LIU Yue-jun1,2, YAO Jin2, WU Hui-qing1, BAI Yong-kang3
1. Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, Fujian, China;
2. Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, Hunan, China;
3. Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(69242 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 分别以预聚体聚丁二酸丁二醇酯(PBS)封端羟基引发ε-己内酯(ε-CL)开环聚合得到了脂肪族聚酯三嵌段共聚物(PCL-PBS-PCL),以纳米层状双羟基金属氧化物(LDHs)表面羟基引发ε-CL原位开环聚合得到了PCL原位聚合接枝改性LDHs(LDHs-g-PCL),然后再将两者采用溶液浇筑法制备出原位聚合改性纳米层状黏土/脂肪族聚酯嵌段共聚物(LDHs-g-PCL/PCL-PBS-PCL)纳米复合材料,研究了PCL-PBS-PCL和LDHs-g-PCL的化学结构以及所制备出的纳米复合材料的结晶特性、力学性能、阻隔性能等。结果表明,成功制备出LDHs-g-PCL/PCL-PBS-PCL纳米复合材料。随着LDHs-g-PCL的加入,PBS嵌段的结晶受限程度逐渐加强,PCL分子链的结晶却逐渐增多,这导致纳米复合材料的高温熔融峰向低温移动,低温熔融峰向高温移动。当LDHs-g-PCL的质量分数为20%时,纳米复合材料的断裂伸长率达到最大值772%,相比纯的PCL-PBS-PCL提高了35%,而拉伸强度相比纯的PCL-PBS-PCL(25.27 MPa)仅降低6%。当LDHs-g-PCL的质量分数为50%时,纳米复合材料对氧气的渗透性达到最低值,其相比纯的PCL-PBS-PCL降低幅度达到52%。这不仅与层状结构LDHs发挥的阻隔效应(显著延长氧气分子在纳米复合材料的曲折渗透路径)密不可分,还可能与LDHs-g-PCL加入引起的体积效应有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛龙
刘跃军
姚进
吴慧青
白永康
关键词 层状黏土脂肪族聚酯嵌段共聚物原位聚合阻隔性能力学性能    
Abstract:Aliphatic polyester block copolymers poly(ε-caprolactone) -poly(butylene succinate) -poly(ε-caprolactone) (PCL-PBS-PCL) were synthesized by the ring-opening polymerization of ε-CL in the presence of the pre-polymerized PBS as the macro-initiator. LDHs-g-PCL were prepared by in-situ ring-opening polymerization of ε-CL. Then LDHs-g-PCL/PCL-PBS-PCL nanocomposites were prepared by blending PCL-PBS-PCL and LDHs-g-PCL via solution casting method. The chemical structures of PCL-PBS-PCL and LDHs-g-PCL were investigated. And crystallization behavior, mechanical properties and barrier properties of nanocomposites were also deeply studied. The results of thermal analysis confirm that the crystallization of PBS blocks is restrained markedly with the addition of LDHs-g-PCL. On the contrary, the crystallization of PCL chains is gradually increasing. The changes of crystallization for nanocomposites lead to the decrease in the high temperature melting peaks and the increase in the low temperature melting peaks. Even though a slight decrease (6%) in tensile strength, elongation at break of nanocomposites reaches to the maximum value of 772% (increased by 35%) in the presence of LDHs-g-PCL containing 20% (mass fraction). Compared with pure PCL-PBS-PCL, the O2 permeability of nanocomposites decreased by nearly 52% as LDHs-g-PCL content increase up to 50% (mass fraction). The key parameters to improve the barrier properties of nanocomposites are not only the barrier effect of the LDHs (a decrease in diffusion is expected because of a more tortuous path for diffusing molecules) but also the bulk effect that they develop in the polymer matrix.
Key wordslayered clay    aliphatic polyester block copolymer    in-situ graft polymerization    barrier property    mechanical property
收稿日期: 2017-11-18      出版日期: 2018-12-18
中图分类号:  O633.14  
通讯作者: 刘跃军(1970-),男,教授,博士,研究方向为先进包装材料与技术,联系地址:湖南省株洲市湖南工业大学包装与材料工程学院(412007),E-mail:yjliu_2005@126.com     E-mail: yjliu_2005@126.com
引用本文:   
毛龙, 刘跃军, 姚进, 吴慧青, 白永康. 原位聚合改性纳米层状黏土/脂肪族聚酯嵌段共聚物复合材料的制备与性能[J]. 材料工程, 2018, 46(12): 70-77.
MAO Long, LIU Yue-jun, YAO Jin, WU Hui-qing, BAI Yong-kang. Synthesis and Properties of Aliphatic Polyester Block Copolymers Filled with Nano Layered Clay Prepared by In-situ Graft Polymerization. Journal of Materials Engineering, 2018, 46(12): 70-77.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001427      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/70
[1] ZHOU C, WEI Z, YU Y, et al. Synthesis and crystallization behavior of novel poly(butylene succinate) copolyesters containing phosphorus pendent groups[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(3):1799-1810.
[2] SCHNEIDERMAN D K, HILLMYER M A. Aliphatic polyester block polymer design[J]. Macromolecules, 2016, 49(7):2419-2428.
[3] OJIJO V, RAY S S. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay[J]. Progress in Materials Science, 2014, 62(5):1-57.
[4] 马丽莉,邵俊,杨晨光,等. PDLA-PBS-PDLA三嵌段共聚物的合成及性能[J]. 高等学校化学学报, 2015, 36(11):2329-2334. MA L L, SHAO J, YANG C G, et al. Synthesis and property of PDLA-PBS-PDLA tri-block copolymer[J]. Chemical Journal of Chinese Universities, 2015, 36(11):2329-2334.
[5] CAO A, OKAMURA T, ISHIGURO C, et al. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)s[J]. Polymer, 2002, 43(3):671-679.
[6] 周晓明,王格,谢文杰,等. 可生物降解P(BS-co-CL)的合成[J]. 合成树脂及塑料, 2015, 32(4):14-17. ZHOU X M, WANG G, XIE W J, et al. Synthesis of biodegradable P(BS-co-CL) copolymer[J]. Chian Synthetic Resin and Plastics, 2015, 32(4):14-17.
[7] HUANG M, COUDANE J, LI S, et al. Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification of di-hydroxy PCL combined with the ring opening polymerization of lactide[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2005, 43(18):4196-4205.
[8] HOQUE M E, HUTMACHER D W, FENG W, et al. Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering[J]. Journal of Biomaterials Science Polymer Edition, 2005, 16(12):1595-1610.
[9] ZHANG Y, LIU Q, ZHANG S, et al. Gas barrier properties and mechanism of kaolin/styrene-butadiene rubber nanocomposites[J]. Applied Clay Science, 2015, 111:37-43.
[10] GAIN O, ESPUCHE E, POLLET E, et al. Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites:influence of the morphology and polymer/clay interactions[J]. Journal of Polymer Science:Part B:Polymer Physics, 2004, 43(2):205-214.
[11] LEBARON P C, WANG Z, PINNAVAIA T J. Polymer-layered silicate nanocomposites:an overview[J]. Applied Clay Science, 1999, 15(1):11-29.
[12] BHARADWAJ R K. Modeling the barrier properties of polymer-layered silicate nanocomposites[J]. Macromolecules, 2001, 34(26):9189-9192.
[13] YI S, YANG Z, WANG S, et al. Effects of MgAlCe-CO3 layered double hydroxides on the thermal stability of PVC resin[J]. Journal of Applied Polymer Science, 2011, 119(5):2620-2626.
[14] WANG D, LEUTERITZ A, KUTLU B, et al. Preparation and investigation of the combustion behavior of polypropylene/organomodified MgAl-LDH micro-nanocomposite[J]. Journal of Alloys and Compounds, 2011, 509(8):3497-3501.
[15] LIU Y J, MAO L, FAN S H. Preparation and study of intumescent flame retardant poly(butylene succinate) using MgAlZnFe-CO3 layered double hydroxide as a synergistic agent[J]. Journal of Applied Polymer Science, 2014, 131(17):8964-8973.
[16] 刘跃军,毛龙. MgAlZnFe-CO3 LDHs对PBS膨胀阻燃体系性能的影响[J]. 高等学校化学学报, 2013, 34(12):2903-2910. LIU Y J, MAO L. Effect of MgAlZnFe-CO3 LDHs on fire retardancy and mechanical properties of intumescent flame retardant poly(butylene succinate) composites[J]. Chemical Journal of Chinese Universities, 2013, 34(12):2903-2910.
[17] 周晓明,王格,褚立强,等. PBS/PCL共混物的增容研究[J]. 合成树脂及塑料, 2015, 32(5):9-12. ZHOU X M, WANG G, CHU L Q, et al. Study on compatibility of PBS/PCL blends[J]. China Synthetic Resin and Plastics, 2015, 32(5):9-12.
[18] CAN E, BUCAK S, KINACI E, et al. Polybutylene succinate (PBS)-polycaprolactone (PCL) blends compatibilized with poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) copolymer for biomaterial applications[J]. Polymer-Plastics Technology and Engineering, 2014,53(11):1178-1193.
[19] LIU L, YU T, WANG P, et al. In situ Polymerization and characterization of Poly(ε-caprolactone)/layered double hydroxide nanocomposites[J]. Advanced Materials Research, 2012, 557-559:371-374.
[20] MESSERSMITH P B, GIANNELLS E P. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocompos-ites[J]. Journal of Polymer Science Part A Polymer Chemistry, 1995,33:1047-1057.
[21] YAN M, YANG H, XING X. Synthesis and enzymatic degradation of poly(ε-caprolactone-co-ethylene carbonate-co-ethylene oxide) copolymer[J]. Polymer Bulletin, 2013,70(2):467-478.
[22] MAGLIO G, MIGLIOZZI A, PALUMBO R. Thermal properties of di-and triblock copolymers of poly(l-lactide) with poly(oxyethylene) or poly(ε-caprolactone)[J]. Polymer, 2003,44(2):369-375.
[23] YANG Z, PENG H, WANG W, et al. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites[J]. Journal of Applied Polymer Science, 2010, 116(5):2658-2667.
[24] PUCCIARIELLO R, TAMMARO L, VILLANI V, et al. New nanohybrids of poly(ε-caprolactone) and a modified Mg/Al hydrotalcite:mechanical and thermal properties[J]. Journal of Polymer Science Part B Polymer Physics, 2007,45(8):945-954.
[25] 马强,罗静,陈元勋,等. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J].材料工程,2016,44(9):109-114.. MA Q, LUO J, CHEN Y X, et al. Preparation and performance of amphiphilic random copolymer noncovalently modified MWCNTs/epoxy composite[J]. Journal of Materials Engineering, 2016, 44(9):109-114.
[26] FRANKLAND S. The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation[J]. Composites Science and Technology, 2003,63(11):1655-1661.
[27] LAYEK R K, DAS A K, PARK M J, et al. Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly(vinylidene fluoride) composites[J]. Carbon, 2015,81(1):329-338.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn