Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (8): 64-70    DOI: 10.11868/j.issn.1001-4381.2017.001443
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
MWCNT/FeNi复合纳米线制备及其雷达微波和工频电磁波吸收性能
于丽新1, 兰晓琳2, 邵枫3, 刘艇安1, 张诗琪1, 王志江2
1. 国网辽宁省电力有限公司电力科学研究院, 沈阳 110006;
2. 哈尔滨工业大学 化工与化学学院, 哈尔滨 150001;
3. 国网辽宁省电力有限公司, 沈阳 110004
MWCNT/FeNi Composite Nanowires for Efficient Electromagnetic Wave Absorption on Microwave and Power Frequency
YU Li-xin1, LAN Xiao-lin2, SHAO Feng3, LIU Ting-an1, ZHANG Shi-qi1, WANG Zhi-jiang2
1. Electric Power Research Institute, State Grid Liaoning Electric Power Supply Co., Ltd., Shenyang 110006, China;
2. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China;
3. State Grid Liaoning Electric Power Supply Co., Ltd., Shenyang 110004, China
全文: PDF(2924 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在多壁碳纳米线(MWCNT)上负载纳米FeNi粒子,同时实现2~18GHz和工频(50Hz)电磁波的高效吸收和衰减。首先采用化学镀方法制备MWCNT/Ni,然后采用多元醇的方法,制备MWCNT/FeNi复合纳米线。通过透射电子显微镜、X射线衍射和矢量网络分析等方法,对MWCNT/FeNi复合纳米线的微观结构进行分析。结果表明,MWCNT/FeNi复合纳米线具有有效的雷达微波吸收带(RL<-10dB)范围为3.5~13.5GHz,能够衰减50Hz工频电磁波产生的76%电场感应以及58%磁场感应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于丽新
兰晓琳
邵枫
刘艇安
张诗琪
王志江
关键词 吸波材料复合纳米线电磁吸收工业频率    
Abstract:Nanosized FeNi particles were loaded along multiwalled carbon nanotubes (MWCNT) to achieve high performance to attenuate electromagnetic (EM) waves of 2-18GHz and power frequency (50Hz). The MWCNT/Ni was produced through the electroless plating method, then followed by a polyol approach to produce MWCNT/FeNi composite nanowires. The microstructure of MWCNT/FeNi composite nanowires was characterized by transmission electron microscopy, scanning electron microscope, X-ray diffraction and vector network analysis. The results show that the multi-component structure endows MWCNT/FeNi composite nanowires with effective EM absorption band (RL<-10dB) covering the frequency range of 3.5-13.5GHz. Meanwhile, 76% electric field and 58% magnetic field are produced with the attenuation of 50Hz power frequency electromagnetic (EM) wave.
Key wordsabsorbing material    composite nanowire    electromagnetic absorption    power frequency
收稿日期: 2017-11-22      出版日期: 2018-08-17
中图分类号:  TB34  
通讯作者: 王志江(1981-),男,副教授,博士生导师,研究方向:功能材料,联系地址:哈尔滨南岗区西大直街92号哈尔滨工业大学(150001),E-mail:wangzhijiang@hit.edu.cn     E-mail: wangzhijiang@hit.edu.cn
引用本文:   
于丽新, 兰晓琳, 邵枫, 刘艇安, 张诗琪, 王志江. MWCNT/FeNi复合纳米线制备及其雷达微波和工频电磁波吸收性能[J]. 材料工程, 2018, 46(8): 64-70.
YU Li-xin, LAN Xiao-lin, SHAO Feng, LIU Ting-an, ZHANG Shi-qi, WANG Zhi-jiang. MWCNT/FeNi Composite Nanowires for Efficient Electromagnetic Wave Absorption on Microwave and Power Frequency. Journal of Materials Engineering, 2018, 46(8): 64-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001443      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/64
[1] 郑玉玲, 于建军, 覃竞亮,等. 电磁污染的危害与防护研究进展[J]. 职业与健康, 2011, 27(6):689-691. ZHENG Y L, YU J J, TAN J L, et al. Research progress on hazard and protection of electromagnetic pollution[J]. Occup and Health, 2011, 27(6):689-691.
[2] SHER L. The effects of natural and man made electromagnetic fields on mood and behavior:the role of sleep disturbances[J]. Medical Hypotheses, 2000, 54(4):630-633.
[3] 程小兰, 胡军武. 电磁辐射的污染与防护[J]. 放射学实践, 2014(6):711-714. CHENG X L, HU J W. Pollution and protection of electromagnetic radiation[J]. Radiol Practice, 2014(6):711-714.
[4] 陈俊平, 吴翠霞. 日常生活中的电磁污染与防护对策[J]. 环境科学与技术, 2003, 26:39-41. CHEN J P, WU C X. Electromagnetic pollution and its defensive measures in daily life[J]. Science and Technology of Environment, 2003, 26:39-41.
[5] 苏镇涛, 周红梅, 胡向军,等. 电磁辐射防护材料人体防护性能评价研究[J]. 辐射防护,2009,29(4):232-236. SU Z T, ZHOU H M, HU X J. Shielding effectiveness evaluation of EM shielding material[J]. Radiation Protection, 2009,29(4):232-236.
[6] 程涛, 李铁虎, 李莎莎,等. 吸波材料的研究进展[J]. 材料导报, 2011, 25(15):50-52. CHENG T, LI T H, LI S S, et al. Research progress on stealth materials[J]. Material Review, 2011, 25(15):50-52.
[7] 刘顾, 汪刘应, 程建良,等. 碳纳米线吸波材料研究进展[J]. 材料工程, 2015, 43(1):104-112. LIU G, WANG L Y, CHENG J L, et al. Progress in research on carbon nanotubes microwave absorbers[J]. Journal of Materials Engineering, 2015, 43(1):104-112.
[8] 黄海翔, 刘洪波, 李劲,等. C/SiCw 复合体的制备及其吸波性能研究[J]. 功能材料, 2014, 45(1):25-29. HUANG H X, LIU H B, LI J, et al. Preparation of C/SiCW composite and its electromagnetic absorption properties[J]. Functional Materials, 2014, 45(1):25-29.
[9] WONG M, PARAMSOTHY M, XU X J, et al. Physical interactions at carbon nanotube-polymer interface[J]. Polymer, 2003, 44(25):7757-7764.
[10] LI X F, GUAN W C, YAN H B, et al. Fabrication and atomic force microscopy/friction force microscopy (AFM/FFM) studies of polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer thin films[J]. Materials Chemistry and Physics, 2004, 88(1):53-58.
[11] YOUSEFI N, SUN X, LIN X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2014, 26(31):5480-5487.
[12] 张雪峰, 李哲男, 王威娜,等. 磁性Fe、Co、Ni纳米粒子的吸波性能研究[J]. 粉末冶金工业, 2006, 16(1):11-16. ZHANG X F, LI Z N, WANG W N, et al. Microwave absorption characteristics of ferromagnetic[J]. Powder Metallurgy Industry, 2006, 16(1):11-16.
[13] 庞永强, 程海峰, 唐耿平,等. Fe-Co合金和中空碳纤维吸波材料的吸波特性研究[J]. 材料导报, 2009, 23(22):5-8. PANG Y Q, CHENG H F, TANG G P, et al. Absorption properties of absorbing materials based on Fe-Co alloys and hollow carbon fibers separately[J]. Material Review, 2009, 23(22):5-8.
[14] 刘渊, 刘祥萱, 王煊军. 铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程, 2014(7):98-106. LIU Y, LIU X X, WANG X J. Research progress in ferrite based core-shell structured composite microwave absorb materials[J]. Journal of Materials Engineering, 2014(7):98-106.
[15] ZHANG Y, WANG X, CAO M. Confinedly implanted NiFe2O4-rGO:Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2017,11(3):1426-1436.
[16] CAO W Q, WANG X X, YUAN J, et al. Temperature dependent microwave absorption of ultrathin graphene composites[J]. Journal of Materials Chemistry C, 2015, 3(38):10017-10022.
[17] WANG X X, MA T, SHU J C, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal, 2018,322:321-300.
[18] 刘晨宇. MWCNT/Fe3O4/PANI/Au异质结构复合物的制备及吸波性能研究[D].哈尔滨:哈尔滨工业大学, 2013. LIU C Y. Preparation and absorbing property study of MWCNT/Fe3O4/PANI/Au hetero structure compound[D]. Harbin:Harbin Institute of Technology, 2013.
[19] 王欢. SiC多孔材料的制备及其抗压性能和吸波性能研究[D].哈尔滨:哈尔滨工业大学, 2016. WANG H. Preparation and compressive and microwave absorption performance of SiC porous materials[D]. Harbin:Harbin Institute of Technology, 2016.
[20] CHE R, PENG L, DUAN X, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials, 2004, 16(5):401-405.
[21] LU M M, CAO M S, CHEN Y H, et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes:a smart absorber prototype varying temperature to tune intensities[J]. ACS Appl Mater Interfaces, 2015, 7(34):19408-19415.
[22] LU M M, CAO W Q, SHI H L, et al. Multi-wall carbon nanotubes decorated with ZnO nanocrystals:mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature[J]. J Mater Chem A, 2014,2(27):10540-10547.
[23] WANG Z, W L, ZHOU J, et al. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. Journal of Physical Chemistry C, 2013, 117(10):5446-5452.
[24] WEN F, ZHANG F, XIANG J, et al. Microwave absorption properties of multiwalled carbon nanotube/FeNi nanopowders as light-weight microwave absorbers[J]. Journal of Magnetism and Magnetic Materials, 2013, 343:281-285.
[25] YANG Q, LIU L, HUI D, et al. Microstructure, electrical conductivity and microwave absorption properties of γ-FeNi decorated carbon nanotube composites[J]. Composites Part B:Engineering, 2016, 87:256-262.
[26] WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. Journal of Materials Chemistry A, 2015, 3(12):6517-6525.
[27] CHE R C, ZHI C Y, LIANG C Y, et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite[J]. Applied Physics Letters, 2006, 88(3):033105.
[28] LV R T, KANG F Y, GU J L, et al. Carbon nanotubes filled with ferromagnetic alloy nanowires:Lightweight and wide-band microwave absorber[J]. Applied Physics Letters, 2008, 93(22):223105.
[29] CHEN Y J, GAO P, WANG R X, et al. Porous Fe3O4/SnO2 core/shell nanorods:synthesis and electromagnetic properties[J]. Journal of Physical Chemistry C, 2011, 115(28):10061-10064.
[30] CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Appl Mater Interfaces, 2012, 4(12):6949-6956.
[31] SONG W L, CAO M S, HOU Z L, et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band[J]. Applied Physics Letters, 2009, 94(23):233110.
[32] LIANG C, GOU Y, WU L, et al. Nature of Electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation[J]. Journal of Physical Chemistry C, 2016, 120(24):12967-12973.
[33] LIANG C, LIU C, WANG H, et al. SiC-Fe3O4 dielectric-magnetic hybrid nanowires:controllable fabrication, characterization and electromagnetic wave absorption[J]. Journal of Materials Chemistry A, 2014, 2(39):16397-16402.
[1] 崔燚, 魏恒勇, 杨静凯, 朱彬, 卜景龙, 梁波. 氮化物吸波材料研究进展[J]. 材料工程, 2020, 48(6): 82-90.
[2] 黄金国, 郭宇, 赵治亚, 李雪, 邢明军, 谢镇坤. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47(6): 77-81.
[3] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[4] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[5] 张雪霏, 周金堂, 姚正军, 蔡海硕, 魏波. CIP/GF/CF/EP吸波复合材料的制备及力学性能[J]. 材料工程, 2019, 47(10): 141-147.
[6] 李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
[7] 刘顾, 汪刘应, 程建良, 王炜, 吴永发. 碳纳米管吸波材料研究进展[J]. 材料工程, 2015, 43(1): 104-112.
[8] 刘渊, 刘祥萱, 王煊军. 铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程, 2014, 0(7): 98-106.
[9] 冯永宝, 唐传明, 丘泰. Fe85Si9.6Al5.4合金的制备、表征及其低频吸波性能[J]. 材料工程, 2014, 0(2): 1-6,12.
[10] 黄大庆, 康飞宇, 周卓辉, 刘翔, 丁鹤雁. 超材料结构单元轮廓法对吸波材料衰减吸收频带的拓宽与优化[J]. 材料工程, 2014, 0(11): 1-6.
[11] 邹田春, 冯振宇, 赵乃勤, 师春生. 活性炭纤维/树脂复合吸波材料的研究[J]. 材料工程, 2011, 0(2): 22-25.
[12] 李小莉, 贾虎生. 羰基多晶铁纤维吸波性能的研究[J]. 材料工程, 2007, 0(3): 14-17.
[13] 周永江, 程海峰, 曹义, 陈朝辉, 才鸿年. 单层雷达吸波材料研究[J]. 材料工程, 2006, 0(4): 8-11.
[14] 哈恩华, 黄大庆, 丁鹤雁. 新型轻质雷达吸波材料的应用研究及进展[J]. 材料工程, 2006, 0(3): 55-59.
[15] 李灿权, 张雪峰, 王威娜, 朱旭光, 董星龙, 黄昊. 铁、镍及其合金纳米粒子的制备及电磁性能研究[J]. 材料工程, 2006, 0(2): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn