Abstract:WCP/steel surface composites were endowed with gradient structure and prepared by powder metallurgy. The mechanical properties, thermal fatigue properties and microstructure of the composites with different W content in the transition layers were analyzed by scanning electron microscopy, metallographic microscope, compression and thermal shock tests, and the influence of W addition on the composites performances was examined. The results show that the composition and structure between the composite layer and the substrate layer are varied by adding tungsten powder in the transition layer, the conflicts in stress, strain, and thermal expansion between the composite layer and the substrate layer are decreased. With the mass fraction of tungsten powder increasing, the W can diffuse both into the substrate layer and the composite layer, which leads to a new phase appearing in the transition layer. The bond between the substrate layer and the composite layer is reinforced. When the W content in the transition layer reaches 30% in mass fraction, the compressive strength reaches 553MPa, and thermal fatigue resistance of WCP/steel surface composite is improved.
[1] 武高辉. 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, 31(5):1228-1237. WU G H. Development challenge and opportunity of metal matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1228-1237.
[2] 郭强,李志强,赵蕾,等. 金属材料的构型复合化[J]. 中国材料进展, 2016, 35(9):21-25. GUO Q, LI Z Q, ZHAO L, et al. Metal matrix composites with microstructural architectures[J]. Materials China, 2016, 35(9):21-45.
[3] SIVAKUMAR G, ANANTHI V, RAMANATHAN S, et al. Production and mechanical properties of nano SiC particle reinforced Ti-6Al-4V matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1):82-90.
[4] 赵龙志,曹小明,田冲,等. 界面过渡层对SiC/Al双连续相复合材料性能的影响[J]. 材料工程, 2006(增刊1):55-58. ZHAO L Z, CAO X M, TIAN C, et al. Effect of casting temperature on mechanical properties of SiC foam/particle/Al hybrid composites[J]. Journal of Materials Engineering, 2006(Suppl 1):55-58.
[5] 赵敏海,刘爱国,郭面焕. WC颗粒增强耐磨材料的研究现状[J]. 焊接, 2006(11):26-29. ZHAO M H, LIU A G, GUO M H. Research on WC reinforced metal matrix composite[J]. Welding Journals, 2006(11):26-29.
[6] 李小强,李子阳,敖敬培,等. 纳米WC颗粒增强高铬铁基粉末冶金材料的制备[J]. 粉末冶金材料科学与工程, 2014(4):615-621. LI X Q, LI Z Y, AO J P, et al. Preparation of nano-WC particles reinforced high chromium iron-based powder metallurgy materials[J]. Materials Science and Engineering of Powder Metallurgy, 2014(4):615-621.
[7] 龙伟民,刘胜新. 材料力学性能测试手册[M]. 北京:机械工业出版社, 2014:531-565. LONG W M, LIU S X. Material mechanics performance test manual[M]. Beijing:China Machine Press, 2014:531-565.
[8] 黄浩科,李祖来,山泉,等. 碳化钨/钢基复合材料的界面重熔[J]. 材料研究学报, 2014, 28(3):191-196. HUANG H K, LI Z L, SHAN Q, et al. Interface remelting of tungsten carbide particles reinforced steel composite[J]. Chinese Journal of Materials Research, 2014, 28(3):191-196.
[9] 符寒光,吴建中. 含钨合金铸铁[J]. 现代铸铁, 1990(4):20-23. FU H G, WU J Z. Tungsten alloyed cast iron[J]. Modern Cast Iron, 1990(4):20-23.
[10] 陈志辉,李祖来,蒋业华,等. 添加钨铁粉对WC/钢基表面复合材料界面及硬度的影响[J]. 材料热处理学报,2011,32(12):38-42. CHEN Z H, LI Z L, JIANG Y H, et al. Influence of addition of tungsten-iron powder on interface and hardness of WC/steel composite coatings[J]. Transactions of Materials and Heat Treatment, 2011, 32(12):38-42.
[11] LOU D, HELLMAN J, LUHULIMA D, et al. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites[J]. Materials Science and Engineering:A, 2003, 340:155-162.
[12] JIN N, YANG Y Q, LUO X, et al. First-principles calculation of W/WC interface:Atomic structure, stability and electronic properties[J]. Applied Surface Science, 2015, 324:205-211.
[13] 范晓杰,徐冬霞,王鹏,等. Sn3.0Ag-0.5Cu-3.0Bi钎料对化学镀镍SiCp/6063Al复合材料真空钎焊接头组织和性能的影响[J]. 材料导报, 2016,30(4):98-101. FAN X J, XU D X, WANG P, et al. Effect of Sn3.0Ag-0.5Cu-3.0Bi solder on microstructure of vacuum soldered joints of SiCp/6063Al composite[J]. Materials Review, 2016, 30(4):98-101.
[14] 李秀兵,方亮,高义民,等. WC颗粒增强钢基表层复合材料中增强相和组织的演化[J]. 西安交通大学学报, 2006, 40(5):549-552. LI X B, FANG L, GAO Y M, et al. Evolution of reinforcing phase and microstructure in WC particle reinforced steel matrix composites[J]. Journal of Xi'an Jiaotong University, 2006, 40(5):549-552.
[15] 姜瑞姣,李美霞. 颗粒增强铝基复合材料时效析出行为研究[J]. 材料导报, 2015, 29(7):138-142. JIANG R J, LI M X. Study on aging precipitation behavior of particle reinforced aluminum matrix composites[J]. Materials Review, 2015, 29(7):138-142.
[16] LEKATOU A, KARANTZALIS A, EVANGELOU A, et al. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ):microstructure, wear and corrosion behavior[J]. Materials & Design, 2015, 65:1121-1135.
[17] LI Z L, JIANG Y H, ZHOU R, et al. Thermal fatigue mechanism of WC particles reinforced steel substrate surface composite at different thermal shock temperatures[J]. Journal of Alloys and Compounds, 2014, 596(8):48-54.
[18] 马庆芳,方荣生,项立成,等. 实用热物理性质手册[M]. 北京:中国农业机械出版社, 1986. MA Q F, FANG R S, XIANG L C, et al. Practical thermal physical properties manual[M]. China Agricultural Machinery Press, 1986.
[19] 黄斌,杨延清. 金属基复合材料中热残余应力的分析方法及其对复合材料组织和力学性能的影响[J]. 材料导报, 2006, 20(5):413-416. HUANG B, YANG Y Q. Analysis methods and the effect of thermal residual stresses on the structure and mechanical properties of metal matrix composites[J]. Materials Review, 2006, 20(5):413-416.
[20] STACK M, PENA D. Solid particle erosion of Ni-Cr/WC metal matrix composites at elevated temperatures, construction of erosion mechanism and process control maps[J]. Wear, 1997, 203/204:489-497.
[21] SHAN Q, LI Z L, JIANG Y H, et al. Effect of Ni addition on microstructure of matrix in casting tungsten carbide particle reinforced composite[J]. Journal of Materials Science and Technology, 2013, 29(8):720-724.
[22] 王国承,王铁明,尚德礼,等. 超细第二相粒子强化钢铁材料的研究进展[J]. 钢铁研究学报, 2007,19(6):9-12. WANG G C, WANG T M, SHANG D L, et al. Progress of strengthened steel with superfine second Phase particle[J]. Journal of Iron and Steel Research, 2007,19(6):9-12.