Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 115-121    DOI: 10.11868/j.issn.1001-4381.2017.001445
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响
山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞
昆明理工大学 材料科学与工程学院, 昆明 650093
Effect of W content on compression and thermal fatigue behavior of WCP/steel matrix composites
SHAN Quan, ZHANG Ya-feng, ZHANG Zhe-xuan, LI Zu-lai, JIANG Ye-hua, WANG Peng-fei
Institute of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(8980 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用梯度结构+粉末冶金的方法制备WCP/钢基表层复合材料。通过扫描电镜、金相显微镜,压缩实验、热震实验等手段分析过渡层钨含量对复合材料力学、热疲劳行为以及微观组织的影响。结果表明:通过在过渡层中添加钨粉,调节复合层和基材层之间的成分和组织,能够有效抑制基材层和复合层在应力、应变及热膨胀系数上的突变,而且随着过渡层钨粉质量分数的提高,W元素会向基材层和复合层中扩散,生成新的相,使得基材层、过渡层以及复合层之间具有较高的结合强度。当钨粉质量分数为30%时,WCP/钢基表层复合材料的抗压强度达到553MPa,且具有较好的抗热疲劳性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
山泉
张亚峰
张哲轩
李祖来
蒋业华
王鹏飞
关键词 过渡层复合材料界面压缩性能热疲劳性能    
Abstract:WCP/steel surface composites were endowed with gradient structure and prepared by powder metallurgy. The mechanical properties, thermal fatigue properties and microstructure of the composites with different W content in the transition layers were analyzed by scanning electron microscopy, metallographic microscope, compression and thermal shock tests, and the influence of W addition on the composites performances was examined. The results show that the composition and structure between the composite layer and the substrate layer are varied by adding tungsten powder in the transition layer, the conflicts in stress, strain, and thermal expansion between the composite layer and the substrate layer are decreased. With the mass fraction of tungsten powder increasing, the W can diffuse both into the substrate layer and the composite layer, which leads to a new phase appearing in the transition layer. The bond between the substrate layer and the composite layer is reinforced. When the W content in the transition layer reaches 30% in mass fraction, the compressive strength reaches 553MPa, and thermal fatigue resistance of WCP/steel surface composite is improved.
Key wordstransition layer    composite    interface    compression performance    thermal fatigue performance
收稿日期: 2017-11-22      出版日期: 2019-02-21
中图分类号:  TB331  
通讯作者: 李祖来(1977-),男,教授,博士生导师,研究方向为复合材料及耐磨材料,联系地址:云南省昆明市五华区学府路昆明理工大学(650093),E-mail:lizulai@126.com     E-mail: lizulai@126.com
引用本文:   
山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
SHAN Quan, ZHANG Ya-feng, ZHANG Zhe-xuan, LI Zu-lai, JIANG Ye-hua, WANG Peng-fei. Effect of W content on compression and thermal fatigue behavior of WCP/steel matrix composites. Journal of Materials Engineering, 2019, 47(2): 115-121.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001445      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/115
[1] 武高辉. 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, 31(5):1228-1237. WU G H. Development challenge and opportunity of metal matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1228-1237.
[2] 郭强,李志强,赵蕾,等. 金属材料的构型复合化[J]. 中国材料进展, 2016, 35(9):21-25. GUO Q, LI Z Q, ZHAO L, et al. Metal matrix composites with microstructural architectures[J]. Materials China, 2016, 35(9):21-45.
[3] SIVAKUMAR G, ANANTHI V, RAMANATHAN S, et al. Production and mechanical properties of nano SiC particle reinforced Ti-6Al-4V matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1):82-90.
[4] 赵龙志,曹小明,田冲,等. 界面过渡层对SiC/Al双连续相复合材料性能的影响[J]. 材料工程, 2006(增刊1):55-58. ZHAO L Z, CAO X M, TIAN C, et al. Effect of casting temperature on mechanical properties of SiC foam/particle/Al hybrid composites[J]. Journal of Materials Engineering, 2006(Suppl 1):55-58.
[5] 赵敏海,刘爱国,郭面焕. WC颗粒增强耐磨材料的研究现状[J]. 焊接, 2006(11):26-29. ZHAO M H, LIU A G, GUO M H. Research on WC reinforced metal matrix composite[J]. Welding Journals, 2006(11):26-29.
[6] 李小强,李子阳,敖敬培,等. 纳米WC颗粒增强高铬铁基粉末冶金材料的制备[J]. 粉末冶金材料科学与工程, 2014(4):615-621. LI X Q, LI Z Y, AO J P, et al. Preparation of nano-WC particles reinforced high chromium iron-based powder metallurgy materials[J]. Materials Science and Engineering of Powder Metallurgy, 2014(4):615-621.
[7] 龙伟民,刘胜新. 材料力学性能测试手册[M]. 北京:机械工业出版社, 2014:531-565. LONG W M, LIU S X. Material mechanics performance test manual[M]. Beijing:China Machine Press, 2014:531-565.
[8] 黄浩科,李祖来,山泉,等. 碳化钨/钢基复合材料的界面重熔[J]. 材料研究学报, 2014, 28(3):191-196. HUANG H K, LI Z L, SHAN Q, et al. Interface remelting of tungsten carbide particles reinforced steel composite[J]. Chinese Journal of Materials Research, 2014, 28(3):191-196.
[9] 符寒光,吴建中. 含钨合金铸铁[J]. 现代铸铁, 1990(4):20-23. FU H G, WU J Z. Tungsten alloyed cast iron[J]. Modern Cast Iron, 1990(4):20-23.
[10] 陈志辉,李祖来,蒋业华,等. 添加钨铁粉对WC/钢基表面复合材料界面及硬度的影响[J]. 材料热处理学报,2011,32(12):38-42. CHEN Z H, LI Z L, JIANG Y H, et al. Influence of addition of tungsten-iron powder on interface and hardness of WC/steel composite coatings[J]. Transactions of Materials and Heat Treatment, 2011, 32(12):38-42.
[11] LOU D, HELLMAN J, LUHULIMA D, et al. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites[J]. Materials Science and Engineering:A, 2003, 340:155-162.
[12] JIN N, YANG Y Q, LUO X, et al. First-principles calculation of W/WC interface:Atomic structure, stability and electronic properties[J]. Applied Surface Science, 2015, 324:205-211.
[13] 范晓杰,徐冬霞,王鹏,等. Sn3.0Ag-0.5Cu-3.0Bi钎料对化学镀镍SiCp/6063Al复合材料真空钎焊接头组织和性能的影响[J]. 材料导报, 2016,30(4):98-101. FAN X J, XU D X, WANG P, et al. Effect of Sn3.0Ag-0.5Cu-3.0Bi solder on microstructure of vacuum soldered joints of SiCp/6063Al composite[J]. Materials Review, 2016, 30(4):98-101.
[14] 李秀兵,方亮,高义民,等. WC颗粒增强钢基表层复合材料中增强相和组织的演化[J]. 西安交通大学学报, 2006, 40(5):549-552. LI X B, FANG L, GAO Y M, et al. Evolution of reinforcing phase and microstructure in WC particle reinforced steel matrix composites[J]. Journal of Xi'an Jiaotong University, 2006, 40(5):549-552.
[15] 姜瑞姣,李美霞. 颗粒增强铝基复合材料时效析出行为研究[J]. 材料导报, 2015, 29(7):138-142. JIANG R J, LI M X. Study on aging precipitation behavior of particle reinforced aluminum matrix composites[J]. Materials Review, 2015, 29(7):138-142.
[16] LEKATOU A, KARANTZALIS A, EVANGELOU A, et al. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ):microstructure, wear and corrosion behavior[J]. Materials & Design, 2015, 65:1121-1135.
[17] LI Z L, JIANG Y H, ZHOU R, et al. Thermal fatigue mechanism of WC particles reinforced steel substrate surface composite at different thermal shock temperatures[J]. Journal of Alloys and Compounds, 2014, 596(8):48-54.
[18] 马庆芳,方荣生,项立成,等. 实用热物理性质手册[M]. 北京:中国农业机械出版社, 1986. MA Q F, FANG R S, XIANG L C, et al. Practical thermal physical properties manual[M]. China Agricultural Machinery Press, 1986.
[19] 黄斌,杨延清. 金属基复合材料中热残余应力的分析方法及其对复合材料组织和力学性能的影响[J]. 材料导报, 2006, 20(5):413-416. HUANG B, YANG Y Q. Analysis methods and the effect of thermal residual stresses on the structure and mechanical properties of metal matrix composites[J]. Materials Review, 2006, 20(5):413-416.
[20] STACK M, PENA D. Solid particle erosion of Ni-Cr/WC metal matrix composites at elevated temperatures, construction of erosion mechanism and process control maps[J]. Wear, 1997, 203/204:489-497.
[21] SHAN Q, LI Z L, JIANG Y H, et al. Effect of Ni addition on microstructure of matrix in casting tungsten carbide particle reinforced composite[J]. Journal of Materials Science and Technology, 2013, 29(8):720-724.
[22] 王国承,王铁明,尚德礼,等. 超细第二相粒子强化钢铁材料的研究进展[J]. 钢铁研究学报, 2007,19(6):9-12. WANG G C, WANG T M, SHANG D L, et al. Progress of strengthened steel with superfine second Phase particle[J]. Journal of Iron and Steel Research, 2007,19(6):9-12.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[3] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[4] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[5] 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
[6] 张小广, 邓慧宇, 陈庆春, 邦宇, 晏乐安, 那兵. 5-异氰酸酯异肽酰氯/ZnO/超支化聚酰胺纳滤膜的制备及性能[J]. 材料工程, 2020, 48(5): 91-99.
[7] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[8] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[9] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[10] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[11] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[12] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[13] 戚云超, 方国东, 梁军, 谢军波. 三维针刺C/C-SiC复合材料预制体工艺参数优化[J]. 材料工程, 2020, 48(1): 27-33.
[14] 张冰清, 杨小波, 孙志强, 苗镇江, 王华栋, 吕毅. 纤维增强石英复合材料的改性处理及性能研究[J]. 材料工程, 2020, 48(1): 48-53.
[15] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn