Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (5): 115-121    DOI: 10.11868/j.issn.1001-4381.2017.001455
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响
唐文珅, 杨新岐(), 李胜利, 李会军
天津大学 材料科学与工程学院, 天津 300354
Effect of welding parameters on microstructure and properties of friction stir welded joints for ferritic stainless steel
Wen-shen TANG, Xin-qi YANG(), Sheng-li LI, Hui-jun LI
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
全文: PDF(10796 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对4mm厚T4003铁素体不锈钢进行搅拌摩擦焊接工艺实验,研究焊接参数对接头组织特征、硬度分布及常温和低温冲击韧性的影响。结果表明:接头搅拌区和热力影响区由铁素体和马氏体双相组织构成;接头搅拌区组织沿试样厚度方向存在非均质性,且随转速的降低及焊接速率的增加越发显著;转速从150r/min增加至250r/min,前进侧热力影响区组织呈现小梯度过渡趋势,无明显变形拉长特征。焊缝硬度分布相对均匀,其最高硬度为290HV,约为母材的1.87倍。焊接参数和温度对接头的冲击吸收功有较大影响:常温(20℃)下,热影响区为母材的90%~92%,搅拌区为母材的85%~103%;低温(-20℃)下,热影响区为母材的87%~97%,搅拌区为母材的82%~95%,表明焊缝区仍具有较好强韧匹配。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐文珅
杨新岐
李胜利
李会军
关键词 搅拌摩擦焊铁素体不锈钢微观组织冲击韧性    
Abstract

Friction stir welding(FSW) was performed for 4mm thick T4003 ferritic stainless steel(FSS) with different welding parameters. The effect of welding parameters on microstructure, hardness distribution, and impact toughness of FS-welded joints at room temperature and low temperature was investigated. The results show that the stir zone(SZ) and the thermo-mechanically affected zone (TMAZ) consist of duplex structure of ferrite and martensite. The SZ is heterogeneous along the thickness of the joint and this trend gets more obvious with the decrease of rotational speed and increase of welding speed. In the heat affected zone(HAZ) of the advancing side, the microstructure transits smoothly and no obvious characteristics of deformation and elongation as the rotational speed increases to 250r/min from 150r/min. The hardness distribution of the weld is relatively uniform and the maximum hardness is 290HV, approximately 1.87 times than that of the base material(BM). The welding parameters and temperature exert great effect on the impact absorbing energy of the welded joint. The impact absorbing energy of HAZ and SZ are up to 90%-92%, and 85%-103% of BM, respectively, at room temperature(20℃). While at low temperature(-20℃), the impact absorbing energy of HAZ and SZ reaches 87%-97%, and 82%-95% of BM, respectively. It shows that the weld zone still has better matching between strength and toughness.

Key wordsfriction stir welding    ferritic stainless steel    microstructure    impact toughness
收稿日期: 2017-11-24      出版日期: 2019-05-17
中图分类号:  TG453+.9  
基金资助:国际热核聚变实验堆(ITER)计划专项(2015GB119001)
通讯作者: 杨新岐     E-mail: xqyang@tju.edu.cn
作者简介: 杨新岐(1962-), 男, 教授, 博士, 主要研究方向为材料加工工程、固相摩擦焊接技术及焊接结构完整性评定, 联系地址:天津市津南区海河教育园区天津大学材料科学与工程学院(300354), E-mail:xqyang@tju.edu.cn
引用本文:   
唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
Wen-shen TANG, Xin-qi YANG, Sheng-li LI, Hui-jun LI. Effect of welding parameters on microstructure and properties of friction stir welded joints for ferritic stainless steel. Journal of Materials Engineering, 2019, 47(5): 115-121.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001455      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/115
C Si Mn P S Cr Ni Cu N Ti Nb Fe
0.011 0.26 1.54 0.024 0.001 11.28 0.84 0.01 0.0065 0.13 0.08 Bal
Table 1  T4003不锈钢的化学成分(质量分数/%)
Fig.1  冲击试样尺寸
(a)热影响区; (b)搅拌区
Fig.2  T4003不锈钢FSW接头宏观形貌(250r/min,120mm/min)
Fig.3  T4003不锈钢FSW接头金相图(1)和SEM图(2)(250r/min,120mm/min)
(a)搅拌区; (b)热力影响区; (c)母材
Fig.4  T4003不锈钢FSW接头搅拌区显微组织
(a)顶部;(b)中部;
(1)150r/min, 80mm/min; (2)150r/min, 120mm/min; (3)250r/min, 80mm/min; (4)250r/min, 120mm/min
ω/(r·min-1) v/(mm·min-1) Grain size/μm
Top Middle
150 80 5.54 4.45
150 120 5.10 4.00
250 80 7.33 5.21
250 120 7.04 4.97
Table 2  焊接接头SZ晶粒平均尺寸
Fig.5  T4003不锈钢FSW接头前进侧TMAZ过渡区金相显微组织
(a)150r/min, 80mm/min; (b)150r/min, 120mm/min; (c)250r/min, 120mm/min
Fig.6  T4003不锈钢FSW接头显微硬度分布
(a)沿横截面横向中线;(b)沿横截面竖向中线
ω/(r·min-1) v/(mm·min-1) Ak/J
SZ(20℃) HAZ(20℃) SZ(-20℃) HAZ(-20℃) BM
150 80 33 36 36 33 39
150 120 40 35 35 37 39
250 80 36 35 31 35 38
250 120 36 36 34 35 38
Table 3  T4003不锈钢FSW接头冲击吸收功
Fig.7  T4003不锈钢FSW接头冲击断口形貌(150r/min,120mm/min)
(a)BM(20℃);(b)HAZ(20℃);(c)HAZ(-20℃);(d)SZ(20℃);(e)SZ(-20℃)
1 国旭明, 柳春恕, 袁进伟. 铁素体不锈钢TIG焊接头组织与性能研究[J]. 航空材料学报, 2011, 31 (3): 56- 59.
doi: 10.3969/j.issn.1005-5053.2011.3.011
1 GUO X M , LIU C S , YUAN J W . Microstructure and mechanical properties of TIG welded joint of ferritic stainless steel[J]. Journal of Aeronautical Materials, 2011, 31 (3): 56- 59.
doi: 10.3969/j.issn.1005-5053.2011.3.011
2 邵泽斌, 陈海涛, 郎宇平, 等. 热加工对430铁素体不锈钢"金粉"现象的影响[J]. 材料工程, 2013, (3): 61- 66.
doi: 10.3969/j.issn.1001-4381.2013.03.012
2 SHAO Z B , CHEN H T , LANG Y P , et al. Effect of thermal pro-cessing on the "gold dust" defect of 430 ferritic stainless steel[J]. Journal of Materials Engineering, 2013, (3): 61- 66.
doi: 10.3969/j.issn.1001-4381.2013.03.012
3 PARK S H C, KUMAGAI T, SATO Y S, et al. Microstructure and mechanical properties of friction stir welded 430 stainless steel[C]//Proceedings of the Fifteenth (2005) International Offshore and Polar Engineering Conference.Seoul, Korea: 2005 Interna-tional Society of Offshore and Polar Engineers.
4 杨新岐, 秦红珊. 铝合金搅拌摩擦焊技术研究存在的问题及趋势[J]. 焊接, 2009, (7): 24- 33.
doi: 10.3969/j.issn.1001-1382.2009.07.005
4 YANG X Q , QIN H S . Trends and problems for current study of aluminum alloy FSW technology[J]. Welding & Joining, 2009, (7): 24- 33.
doi: 10.3969/j.issn.1001-1382.2009.07.005
5 张亮亮, 王希靖, 刘骁. 6082铝合金搅拌摩擦焊焊接过程中晶粒取向演化[J]. 材料工程, 2018, 46 (10): 55- 59.
doi: 10.11868/j.issn.1001-4381.2017.001011
5 ZHANG L L , WANG X J , LIU X . Crystal orientation evolution during friction stir welding of 6082 aluminum alloys[J]. Journal of Materials Engineering, 2018, 46 (10): 55- 59.
doi: 10.11868/j.issn.1001-4381.2017.001011
6 王文, 李天麒, 乔柯, 等. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
6 WANG W , LI T Q , QIAO K , et al. Effect of rotation rate on mi-crostructure and properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
7 秦红珊, 杨新岐. 铝合金搅拌摩擦焊缝和母材疲劳裂纹扩展行为[J]. 航空材料学报, 2017, 37 (5): 41- 47.
7 QIN H S , YANG X Q . Performances of fatigue crack growth for aluminum friction stir welds and base materials[J]. Journal of Aeronautical Materials, 2017, 37 (5): 41- 47.
8 LAKSHMINARAYANAN A K , BALASUBRAMANIAN V . An assessment of microstructure, hardness, tensile and impact stre-ngth of friction stir welded ferritic stainless steel joints[J]. Mat-erials & Design, 2010, 31 (10): 4592- 600.
9 CHO H H , HAN H N , HONG S T , et al. Microstructural analy-sis of friction stir welded ferritic stainless steel[J]. Materials Science and Engineering:A, 2011, 528 (6): 2889- 2894.
doi: 10.1016/j.msea.2010.12.061
10 BILGIN M B , MERAN C . The effect of tool rotational and trav-erse speed on friction stir weldability of AlSl 430 ferritic stainless steels[J]. Materials & Design, 2012, 33, 376- 383.
11 HAN J , LI H J , ZHU Z X , et al. Microstructure and mechanical properties of friction stir welded 18Cr-2Mo ferritic stainless steel thick plate[J]. Materials & Design, 2014, 63, 238- 246.
12 AHN B W , CHOI D H , KIM D J , et al. Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool[J]. Materials Science and Engineering:A, 2012, 532, 476- 479.
doi: 10.1016/j.msea.2011.10.109
13 HUSAIN M M , SARKAR R , PAL T K , et al. Friction stir welding of steel:heat input, microstructure, and mechanical pr-operty Co-relation[J]. Journal of Materials Engineering & Per-formance, 2015, 24 (9): 3673- 3683.
14 ZHANG Z H , WANG Z B , WANG W X , et al. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel[J]. Materials & Design, 2015, 68, 114- 120.
15 SATO Y S , KOKAWA H , FUJⅡ H T , et al. Mechanical properties and microstructure of dissimilar friction stir welds of 11Cr-ferritic/martensitic steel to 316 stainless steel[J]. Meta-llurgical and Materials Transactions A, 2015, 46 (12): 5789- 5800.
doi: 10.1007/s11661-015-3152-5
16 HONEYCOMBE R W K . Steels:microstructure and properties[J]. Metallurgy & Materials Science, 2006, 194 (4260): 55- 56.
17 崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007: 185- 190.
17 CUI Z X , TAN Y C . Metallography and heat treatment[M]. Beijing: China Machine Press, 2007: 185- 190.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[4] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[5] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[6] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[7] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[8] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[9] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[10] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[11] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[12] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[13] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[14] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[15] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn