Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (3): 15-22    DOI: 10.11868/j.issn.1001-4381.2017.001457
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯及碳化硅增强铝基复合材料的冲击力学行为
杨宇凯1, 张宝1, 王旭东1, 张虎生2, 武岳1, 关永军1,*()
1 中国航发北京航空材料研究院, 北京 100095
2 中国科学院力学研究所, 北京 100080
Mechanical behavior of graphene or SiC reinforced aluminum matrix composites under dynamic loading
Yu-kai YANG1, Bao ZHANG1, Xu-dong WANG1, Hu-sheng ZHANG2, Yue WU1, Yong-jun GUAN1,*()
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
全文: PDF(4757 KB)   HTML ( 14 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用微机控制电子万能实验机和分离式霍普金森压杆(SHPB)对石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料进行准静态压缩实验和动态冲击实验,研究石墨烯增强铝基复合材料在不同应变率下的冲击力学性能,采用SEM扫描电镜研究石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料的形貌特征。结果表明:在各个应变率载荷下,添加石墨烯和添加碳化硅都增强了铝合金的屈服强度,其中,添加石墨烯对铝合金的屈服强度提升更加明显,但不影响材料的应变硬化率;相较于在材料中添加碳化硅,添加石墨烯弱化了材料的应变率效应,在高应变率条件下,添加石墨烯降低了材料的强度极限;选取部分实验数据,拟合确定了添加石墨烯和添加碳化硅两种复合材料的J-C和Z-A本构方程的参数,并比较了两种本构模型的预测能力,对于本工作所研究的复合材料,J-C模型的预测能力更好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宇凯
张宝
王旭东
张虎生
武岳
关永军
关键词 冲击力学石墨烯碳化硅铝基复合材料本构模型    
Abstract

Quasi-static compression experiments on graphene-reinforced aluminum matrix composites were carried out by means of microcomputer controlled electronic universal testing machine, while dynamic behavior of the composites at various high strain rates was determined by split hopkinson pressure bar (SHPB). In addition, scanning electron microscopy (SEM) was employed to examine the morphological feature of aluminum matrix composites reinforced respectively by grapheme and SiC. The results show that at all strain rate, the yield strength of aluminum is improved both with addition of graphene and SiC, by incorporation of graphene, the yield strength of aluminum is improved more significantly, but without affecting the strain hardening rate of the material. In comparison with SiC as reinforcements, use of graphene undermines strain rate sensitivity of the composites, and meanwhile results in a decline in ultimate strength. J-C and Z-A constitutive models were fitted respectively to the experimental results to obtain relative parameters. Comparison between the two models suggests that J-C model is more accurate in terms of describing stress-strain behavior of both composites reinforced respectively by graphene and SiC.

Key wordsimpact mechanics    graphene    SiC    aluminum matrix composite    constitutive model
收稿日期: 2017-11-26      出版日期: 2019-03-12
中图分类号:  TB122  
通讯作者: 关永军     E-mail: guanbiam@163.com
作者简介: 关永军(1977-), 男, 副研究员, 博士, 主要从事航空材料和力学集成计算方面的研究, 联系地址:北京市81信箱39分箱(100095), E-mail:guanbiam@163.com
引用本文:   
杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
Yu-kai YANG, Bao ZHANG, Xu-dong WANG, Hu-sheng ZHANG, Yue WU, Yong-jun GUAN. Mechanical behavior of graphene or SiC reinforced aluminum matrix composites under dynamic loading. Journal of Materials Engineering, 2019, 47(3): 15-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001457      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/15
Fig.1  分离式霍普金森压杆原理示意图
MaterialStateStrain rate/s-1
Al-SiCQuasi-static900170023003000
Al-grapheneQuasi-static900170023003000
Table 1  实验材料及应变率范围
Fig.2  准静态单向压缩应力-应变曲线
Fig.3  石墨烯增强铝基复合材料的应变率效应
Fig.4  碳化硅增强铝基复合材料的应变率效应
Fig.5  屈服强度随应变率变化曲线
Fig.6  光学显微镜下试样照片  (a)碳化硅增强铝基;(b)石墨烯增强铝基
Fig.7  碳化硅增强铝基复合材料实验照片(a)及SEM照片(b)
Fig.8  石墨烯增强铝基复合材料实验照片(a)及SEM照片(b)
Fig.9  J-C本构方程参数测定
MaterialStatic strain rate/s-1Static yield stress/MPa
SiC0.000389300.0
Graphene0.000322354.3
Table 2  两种材料静态应变率和静态屈服应力
MaterialBullet diameter/mmVelocity/(m·s-1)Strain rate/ s-1
30010.5951.9191
40010.5947.5852
SiC30015.81733.0380
30020.62325.7660
30026.13139.3550
30010.5846.1742
40010.5995.9063
Graphene30015.81701.4010
30020.62213.6430
30026.12767.7630
Table 3  动态冲击实验应变率
MaterialParameterFitting result
SiCA300
B1607.61399
n  0.61119
C  0.03064
GrapheneA354.3
B1549.88879
n  0.68473
C  0.03682
Table 4  J-C本构方程参数拟合结果
MaterialParameterFitting result
SiCA0300
A11460.65458
n0.49174
A30.00007
GrapheneA0354.3
A11323.01495
n0.43849
A30.00008
Table 5  Z-A本构方程拟合参数值
Fig.10  碳化硅增强铝基复合材料本构模型预测结果和实验对比图  (a)J-C模型;(b)Z-A模型
Fig.11  石墨烯增强铝基复合材料本构模型预测结果与实验结果对比图  (a)J-C模型;(b)Z-A模型
MaterialConstitutive modelMaximum error rate/%
SiCJ-C Z-A6.98 14.30
GrapheneJ-C Z-A7.95 17.20
Table 6  J-C模型和Z-A模型预测的最大误差率对比
1 LIN J , ZHANG P P , ZHENG C , et al. Reduced silanized grapheme oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties[J]. Applied Surface Science, 2014, 316, 114- 123.
doi: 10.1016/j.apsusc.2014.07.058
2 CHEN Y F , BI J Q , YIN C L , et al. Microstructure and fracture toughness of grapheme nanosheets/alumina composites[J]. Ceramics International, 2014, 40, 13883- 13889.
doi: 10.1016/j.ceramint.2014.05.107
3 ZHANG Y L , WANG Y , YU J R , et al. Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole[J]. Polymer, 2014, 55, 4990- 5000.
doi: 10.1016/j.polymer.2014.07.045
4 WANG R G , LI Z , LIU W B , et al. Attapulgite-graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites[J]. Composites Science and Technology, 2013, 87, 29- 35.
doi: 10.1016/j.compscitech.2013.08.002
5 黄伯云, 肖鹏, 陈康华, 等. 复合材料研究新进展(上)[J]. 金属世界, 2007, (2): 46- 48.
doi: 10.3969/j.issn.1000-6826.2007.02.015
5 HUANG B Y , XIAO P , CHEN K H , et al. New progress in the research of composite materials[J]. Metal World, 2007, (2): 46- 48.
doi: 10.3969/j.issn.1000-6826.2007.02.015
6 修子扬, 刘波, 武高辉, 等. 可用于空间的SiCP/Al复合材料热物理性能研究[J]. 载人航天, 2012, 18, 62- 64.
6 XIU Z Y , LIU B , WU G H , et al. Thermophysical properties of SiCP/Al composites for space applications[J]. Manned Spaceflight, 2012, 18, 62- 64.
7 郑喜军, 米国发. 碳化硅颗粒增强铝基复合材料的研究现状及发展趋势[J]. 材料热处理技术, 2011, 40 (12): 92- 95.
7 DENG X J , MI G F . Research status and development trend of SiC reinforced aluminum matrix composites[J]. Transactions of Materials and Heat Treatment, 2011, 40 (12): 92- 95.
8 李炯利, 王旭东. 石墨烯含量对铝基复合材料微观组织和力学性能的影响[J]. 稀有金属, 2018, 42 (3): 252- 258.
8 LI J L , WANG X D . Effect of graphene content on microstructure and mechanical properties of aluminum matrix composites[J]. Chinese Journal of Rare Metals, 2018, 42 (3): 252- 258.
9 BASTWROS M , KIM G Y , ZHU C , et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering[J]. Composites:Part B, 2014, 60, 111- 118.
doi: 10.1016/j.compositesb.2013.12.043
10 LI Z , FAN G L , TAN Z Q , et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites[J]. Nanotechnology, 2014, 25, 325601.
doi: 10.1088/0957-4484/25/32/325601
11 燕绍九, 陈翔, 洪起虎, 等. 石墨烯增强铝基纳米复合材料研究进展[J]. 航空材料学报, 2016, 36 (3): 57- 70.
11 YAN S J , CHEN X , HONG Q H , et al. Research progress of graphene reinforced aluminum matrix nanocomposites[J]. Journal of Aeronautical Materials, 2016, 36 (3): 57- 70.
12 YAN S J , DAI S L , ZHANG X Y , et al. Investigating aluminum alloy reinforced by graphene nanoflakes[J]. Materials Science and Engineering:A, 2014, 612, 440- 444.
doi: 10.1016/j.msea.2014.06.077
13 洪起虎, 燕绍九, 杨程, 等. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44 (9): 1- 7.
13 HONG Q H , YAN S J , YANG C , et al. Microstructure and mechanical properties of graphene oxide/copper matrix composites[J]. Journal of Materials Engineering, 2016, 44 (9): 1- 7.
14 李涛, 郭西振, 张新馨. 颗粒增强铝基复合材料的研究与进展[J]. 黑龙江科技信息, 2014, (1): 41- 42.
doi: 10.3969/j.issn.1673-1328.2014.01.055
14 LI T , GUO X Z , ZHANG X X . Research and development of particle reinforced aluminum matrix composites[J]. Heilongjiang Science and Technology Information, 2014, (1): 41- 42.
doi: 10.3969/j.issn.1673-1328.2014.01.055
15 崔岩, 王力锋, 任建岳, 等. 中国航空航天用多功能SiC/Al复合材料研究进展[J]. 中国航空学报, 2008, (6): 578- 584.
15 CUI Y , WANG L F , REN J Y , et al. Research progress of multifunctional SiC/Al composites for aerospace applications[J]. Chinese Journal of Aeronautics, 2008, (6): 578- 584.
16 MICHLKOV M , KAIAROV M , TATARKO P , et al. Effect of homogenization treatment on the fracture behavior of silicon nitride/grapheme nanoplate lets composites[J]. Journal of the European Ceramic Society, 2014, 34, 3291- 3299.
doi: 10.1016/j.jeurceramsoc.2014.03.023
17 RAMIREZ C , MIRANZO P , BELMONTE M , et al. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets[J]. Journal of the European Ceramic Society, 2014, 34, 161- 169.
doi: 10.1016/j.jeurceramsoc.2013.08.039
18 王宏凯, 马及胜, 房立清, 等. 涂层材料的J-C本构模型参数标定[J]. 火炮发射与控制学报, 2015, 36 (3): 36- 39.
18 WANG H K , MA J S , FANG L Q , et al. Parameter calibration of J-C constitutive model for coating materials[J]. Journal of Gun Launch & Control, 2015, 36 (3): 36- 39.
19 BARTOLUCCI F S , PARAS J , RAFOEE A M . Graphene-alum-inum nanocomposites[J]. Materials Science and Engineering:A, 2011, 528, 7933- 7937.
doi: 10.1016/j.msea.2011.07.043
20 LATIE H F , SHERIF M E . Effects of sintering temperature and graphite addition on the mechanical properties of aluminum[J]. Journal of Industrial and Engineering Chemistry, 2012, 18, 2129- 2134.
doi: 10.1016/j.jiec.2012.06.007
21 张宏建, 温卫东, 崔海涛, 等. Z-A模型的修正及在预测本构关系中应用[J]. 航空动力学报, 2009, 24 (6): 24- 26.
21 ZHANG H J , WEN W D , CUI H T , et al. Modification of Z-A model and its application in prediction of constitutive relations[J]. Journal of Aerospace Power, 2009, 24 (6): 24- 26.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[3] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[4] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[5] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[6] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[7] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[8] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[9] 宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
[10] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[11] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[12] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[13] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[14] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[15] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn