Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 15-22    DOI: 10.11868/j.issn.1001-4381.2017.001457
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯及碳化硅增强铝基复合材料的冲击力学行为
杨宇凯1, 张宝1, 王旭东1, 张虎生2, 武岳1, 关永军1
1. 中国航发北京航空材料研究院, 北京 100095;
2. 中国科学院力学研究所, 北京 100080
Mechanical behavior of graphene or SiC reinforced aluminum matrix composites under dynamic loading
YANG Yu-kai1, ZHANG Bao1, WANG Xu-dong1, ZHANG Hu-sheng2, WU Yue1, GUAN Yong-jun1
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
全文: PDF(4757 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用微机控制电子万能实验机和分离式霍普金森压杆(SHPB)对石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料进行准静态压缩实验和动态冲击实验,研究石墨烯增强铝基复合材料在不同应变率下的冲击力学性能,采用SEM扫描电镜研究石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料的形貌特征。结果表明:在各个应变率载荷下,添加石墨烯和添加碳化硅都增强了铝合金的屈服强度,其中,添加石墨烯对铝合金的屈服强度提升更加明显,但不影响材料的应变硬化率;相较于在材料中添加碳化硅,添加石墨烯弱化了材料的应变率效应,在高应变率条件下,添加石墨烯降低了材料的强度极限;选取部分实验数据,拟合确定了添加石墨烯和添加碳化硅两种复合材料的J-C和Z-A本构方程的参数,并比较了两种本构模型的预测能力,对于本工作所研究的复合材料,J-C模型的预测能力更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宇凯
张宝
王旭东
张虎生
武岳
关永军
关键词 冲击力学石墨烯碳化硅铝基复合材料本构模型    
Abstract:Quasi-static compression experiments on graphene-reinforced aluminum matrix composites were carried out by means of microcomputer controlled electronic universal testing machine, while dynamic behavior of the composites at various high strain rates was determined by split hopkinson pressure bar (SHPB). In addition, scanning electron microscopy (SEM) was employed to examine the morphological feature of aluminum matrix composites reinforced respectively by grapheme and SiC. The results show that at all strain rate, the yield strength of aluminum is improved both with addition of graphene and SiC, by incorporation of graphene, the yield strength of aluminum is improved more significantly, but without affecting the strain hardening rate of the material. In comparison with SiC as reinforcements, use of graphene undermines strain rate sensitivity of the composites, and meanwhile results in a decline in ultimate strength. J-C and Z-A constitutive models were fitted respectively to the experimental results to obtain relative parameters. Comparison between the two models suggests that J-C model is more accurate in terms of describing stress-strain behavior of both composites reinforced respectively by graphene and SiC.
Key wordsimpact mechanics    graphene    SiC    aluminum matrix composite    constitutive model
收稿日期: 2017-11-26      出版日期: 2019-03-12
中图分类号:  TB122  
通讯作者: 关永军(1977-),男,副研究员,博士,主要从事航空材料和力学集成计算方面的研究,联系地址:北京市81信箱39分箱(100095),E-mail:guanbiam@163.com     E-mail: guanbiam@163.com
引用本文:   
杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
YANG Yu-kai, ZHANG Bao, WANG Xu-dong, ZHANG Hu-sheng, WU Yue, GUAN Yong-jun. Mechanical behavior of graphene or SiC reinforced aluminum matrix composites under dynamic loading. Journal of Materials Engineering, 2019, 47(3): 15-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001457      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/15
[1] LIN J,ZHANG P P,ZHENG C,et al. Reduced silanized grapheme oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties[J].Applied Surface Science,2014,316:114-123.
[2] CHEN Y F,BI J Q,YIN C L,et al. Microstructure and fracture toughness of grapheme nanosheets/alumina composites[J].Ceramics International, 2014, 40:13883-13889.
[3] ZHANG Y L,WANG Y,YU J R,et al. Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole[J].Polymer,2014,55:4990-5000.
[4] WANG R G,LI Z,LIU W B,et al. Attapulgite-graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites[J].Composites Science and Technology,2013,87:29-35.
[5] 黄伯云,肖鹏,陈康华,等.复合材料研究新进展(上)[J].金属世界,2007(2):46-48. HUANG B Y,XIAO P,CHEN K H,et al. New progress in the research of composite materials[J]. Metal World,2007(2):46-48.
[6] 修子扬,刘波,武高辉,等.可用于空间的SiCP/Al复合材料热物理性能研究[J].载人航天,2012,18:62-64. XIU Z Y,LIU B, WU G H,et al. Thermophysical properties of SiCP/Al composites for space applications[J]. Manned Spaceflight, 2012, 18:62-64.
[7] 郑喜军,米国发. 碳化硅颗粒增强铝基复合材料的研究现状及发展趋势[J].材料热处理技术,2011,40(12):92-95. DENG X J,MI G F. Research status and development trend of SiC reinforced aluminum matrix composites[J]. Transactions of Materials and Heat Treatment,2011,40(12):92-95.
[8] 李炯利,王旭东. 石墨烯含量对铝基复合材料微观组织和力学性能的影响[J]. 稀有金属,2018,42(3):252-258. LI J L,WANG X D. Effect of graphene content on microstructure and mechanical properties of aluminum matrix composites[J]. Chinese Journal of Rare Metals,2018,42(3):252-258.
[9] BASTWROS M,KIM G Y,ZHU C,et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering[J].Composites:Part B,2014,60:111-118.
[10] LI Z,FAN G L,TAN Z Q,et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites[J]. Nanotechnology,2014,25:325601.
[11] 燕绍九,陈翔,洪起虎,等. 石墨烯增强铝基纳米复合材料研究进展[J].航空材料学报,2016,36(3):57-70. YAN S J,CHEN X,HONG Q H,et al. Research progress of graphene reinforced aluminum matrix nanocomposites[J].Journal of Aeronautical Materials,2016,36(3):57-70.
[12] YAN S J,DAI S L,ZHANG X Y,et al. Investigating aluminum alloy reinforced by graphene nanoflakes[J]. Materials Science and Engineering:A,2014,612:440-444.
[13] 洪起虎,燕绍九,杨程,等. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J].材料工程,2016, 44(9):1-7. HONG Q H,YAN S J,YANG C,et al. Microstructure and mechanical properties of graphene oxide/copper matrix composites[J].Journal of Materials Engineering, 2016, 44(9):1-7.
[14] 李涛,郭西振,张新馨.颗粒增强铝基复合材料的研究与进展[J].黑龙江科技信息,2014(1):41-42. LI T,GUO X Z,ZHANG X X. Research and development of particle reinforced aluminum matrix composites[J]. Heilongjiang Science and Technology Information,2014(1):41-42.
[15] 崔岩,王力锋,任建岳,等.中国航空航天用多功能SiC/Al复合材料研究进展[J].中国航空学报, 2008(6):578-584. CUI Y,WANG L F,REN J Y,et al. Research progress of multifunctional SiC/Al composites for aerospace applications[J]. Chinese Journal of Aeronautics, 2008(6):578-584.
[16] MICHLKOV M,KAIAROV M,TATARKO P,et al. Effect of homogenization treatment on the fracture behavior of silicon nitride/grapheme nanoplate lets composites[J].Journal of the European Ceramic Society,2014,34:3291-3299.
[17] RAMIREZ C,MIRANZO P,BELMONTE M,et al. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets[J].Journal of the European Ceramic Society,2014,34:161-169.
[18] 王宏凯,马及胜,房立清,等. 涂层材料的J-C本构模型参数标定[J]. 火炮发射与控制学报,2015,36(3):36-39. WANG H K,MA J S,FANG L Q,et al. Parameter calibration of J-C constitutive model for coating materials[J]. Journal of Gun Launch & Control,2015,36(3):36-39.
[19] BARTOLUCCI F S,PARAS J,RAFOEE A M. Graphene-alum-inum nanocomposites[J].Materials Science and Engineering:A,2011,528:7933-7937.
[20] LATIE H F,SHERIF M E. Effects of sintering temperature and graphite addition on the mechanical properties of aluminum[J].Journal of Industrial and Engineering Chemistry,2012,18:2129-2134.
[21] 张宏建,温卫东,崔海涛,等. Z-A模型的修正及在预测本构关系中应用[J]. 航空动力学报,2009,24(6):24-26. ZHANG H J,WEN W D,CUI H T,et al,Modification of Z-A model and its application in prediction of constitutive relations[J]. Journal of Aerospace Power, 2009,24(6):24-26.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[3] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[4] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[5] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[8] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[9] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[10] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn