Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (2): 129-137    DOI: 10.11868/j.issn.1001-4381.2017.001520
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚醚醚酮与髌骨软骨间的生物摩擦学特性
张欣悦1,2, 张德坤2,*(), 陈凯2, 徐寒冬1
1 中国矿业大学 机电工程学院, 江苏 徐州 221116
2 中国矿业大学 材料科学与工程学院, 江苏 徐州 221116
Biological tribological properties between polyetheretherketone and patella cartilage
Xin-yue ZHANG1,2, De-kun ZHANG2,*(), Kai CHEN2, Han-dong XU1
1 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
2 School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
全文: PDF(8414 KB)   HTML ( 24 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以聚醚醚酮(polyetheretherketone,PEEK)与天然软骨为研究对象,医用CoCrMo和天然软骨作为PEEK的对比材料,开展往复滑动摩擦磨损实验,研究法向载荷、滑移速率、摩擦配副对其摩擦磨损行为的影响。结果表明:在小牛血清润滑的条件下,天然股骨软骨/髌骨软骨的摩擦因数最小,PEEK/髌骨软骨摩擦因数明显低于CoCrMo/髌骨软骨,PEEK/髌骨软骨配副的软骨表面磨损轻微,CoCrMo/髌骨软骨配副的软骨表面损伤严重;PEEK/髌骨软骨配副间的摩擦因数随法向载荷的增大而减小,在低载荷条件下(10~20N)表现明显,且法向载荷越大,PEEK表面磨痕越深,摩擦副磨损越严重;PEEK/髌骨软骨配副间的摩擦因数随滑移速率的增大而增大,在高滑移动速率条件下(10~20mm/s)明显,且滑移速率越大,PEEK表面磨痕越深,摩擦副磨损越严重;相对于滑移速率,载荷对摩擦因数的影响更大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张欣悦
张德坤
陈凯
徐寒冬
关键词 聚醚醚酮髌骨软骨生物摩擦学磨损机理    
Abstract

Reciprocating sliding friction and wear tests were carried out on polyetheretherketone (PEEK) and natural patella cartilage using the pin-on-disk configuration at different normal loads, slipping velocity and friction pairs under 25% fetal bovine serum, where natural femoral cartilage and CoCrMo were used for comparison to PEEK. The influence of normal load, slipping velocity and friction pair on the friction and wear behavior was studied. The results show that under 25% fetal bovine serum conditions, the friction coefficient of femoral cartilage/patella cartilage is the smallest among that of PEEK/patella cartilage and CoCrMo/patella cartilage, the coefficient of friction of PEEK/patella is obviously lower than that of CoCrMo/patella and the wear surface of CoCrMo/patella is more seriously damaged than that of PEEK/patella. The friction coefficient of PEEK/patella decreases with the increase of normal load especially under the low loads (10-20N) and increases with the increase of slipping velocity especially under the high slipping velocity conditions (10-20mm/s). The wear surface damage increases with the increase of normal load and slipping velocity. The normal load is more effective than slipping velocity.

Key wordspolyetheretherketone    patella cartilage    biological tribology    abrasion mechanism
收稿日期: 2017-12-11      出版日期: 2019-02-21
中图分类号:  Q811.6  
基金资助:国家重点研发计划项目(2016YFC1101803);国家自然科学基金(51705517);江苏省自然科学基金(BK20160257)
通讯作者: 张德坤     E-mail: dkzhang@cumt.edu.cn
作者简介: 张德坤(1971-), 男, 教授, 博士, 主要从事生物摩擦学的研究, 联系地址:江苏省徐州市中国矿业大学南湖校区材料科学与工程学院(221116), E-mail:dkzhang@cumt.edu.cn
引用本文:   
张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
Xin-yue ZHANG, De-kun ZHANG, Kai CHEN, Han-dong XU. Biological tribological properties between polyetheretherketone and patella cartilage. Journal of Materials Engineering, 2019, 47(2): 129-137.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001520      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/129
Material Tensile strength/MPa Density
(kg·m-3)
Elastic modulus/GPa Poisson ratio Vickers hardness (HV)
PEEK 97 1300 3.6 0.35 30-40
CoCrMo 970 8500 200 0.3 321
Table 1  选用材料的力学性能
Fig.1  摩擦实验装置示意图
Fig.2  不同配副的摩擦因数
(a)摩擦因数时变曲线;(b)稳定阶段的摩擦因数
Fig.3  不同配副表面宏观形貌
(a)PEEK盘;(b)CoCrMo盘;(c)cartilage盘
Fig.4  不同配副表面SEM形貌
(a)PEEK盘; (b)CoCrMo盘; (c)软骨盘; (d)髌骨销(PEEK); (e)髌骨销(CoCrMo); (f)髌骨销(软骨)
Fig.5  不同材料在20N加载下的蠕变曲线
Fig.6  不同材料在20N加载下的法向形变曲线
Fig.7  摩擦因数随载荷的变化曲线
(a)摩擦因数时变曲线; (b)稳定阶段的摩擦因数
Fig.8  不同载荷下PEEK表面形貌
(a)10N;(b)20N;(c)30N;(d)40N;(e)50N
Fig.9  不同载荷下PEEK表面磨痕轮廓
(a)10N;(b)20N;(c)30N;(d)40N;(e)50N
Fig.10  不同载荷下的PEEK表面磨痕深度
Fig.11  PEEK/髌骨软骨的实时法向形变曲线
Fig.12  摩擦因数随速率的变化曲线
(a)摩擦因数时变曲线; (b)稳定阶段的摩擦因数
Fig.13  不同速率下PEEK表面形貌
(a)2mm/s; (b)5mm/s; (c)10mm/s; (d)15mm/s; (e)20mm/s
Fig.14  不同速率下PEEK表面磨痕轮廓
(a)2mm/s; (b)5mm/s; (c)10mm/s; (d)15mm/s; (e)20mm/s
Fig.15  不同速率下PEEK表面磨痕深度
1 MULCAHY H , CHEW F S . Current concepts in knee replacement:complications[J]. American Journal of Roentgenology, 2014, 202 (1): 76- 86.
doi: 10.2214/AJR.13.11308
2 GUPTA S K , CHU A , RANAWAT A S , et al. Review article:osteolysis after total knee arthroplasty[J]. Journal of Arthroplasty, 2007, 22 (6): 787- 799.
doi: 10.1016/j.arth.2007.05.041
3 HERNIGOU P , NOGIER A , MANICON O , et al. Alternative femoral bearing surface options for knee replacement in young patients[J]. Knee, 2004, 11 (3): 169- 172.
doi: 10.1016/j.knee.2004.04.001
4 INACIO M C S , GUY C , PAXTON E W , et al. Alternative bearings in total knee arthroplasty:risk of early revision compared to traditional bearings[J]. Acta Orthopaedica, 2013, 84 (2): 145- 152.
doi: 10.3109/17453674.2013.784660
5 覃小东, 李朝健, 符俏. 人工膝关节常用假体材料及其生物相容性[J]. 中国组织工程研究, 2012, 16 (12): 2257- 2260.
doi: 10.3969/j.issn.1673-8225.2012.12.039
5 QIN X D , LI C J , FU Q . Commonly used prosthetic materials for artificial knee joint and their biocompatibility[J]. Chinese Journal of Tissue Engineering Research, 2012, 16 (12): 2257- 2260.
doi: 10.3969/j.issn.1673-8225.2012.12.039
6 GARCIA-GONZALEZ D , RODRIGUEZ-MILLAN M , RUSINEK A , et al. Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites[J]. Composite Structures, 2015, 133 (2/3): 1116- 1126.
7 CHEN F , OU H G , LU B , et al. A constitutive model of polyether-ether-ketone (PEEK)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53 (1): 427- 433.
8 GARCIA-GONZALEZ D , RODRIGUEZ-MILLAN M , RUSINEK A , et al. Low temperature effect on impact energy absorption capability of PEEK composites[J]. Composite Structures, 2015, 134 (15): 440- 449.
9 程芳伟, 姜其斌, 张志军. 聚醚醚酮耐磨改性研究进展[J]. 工程塑料应用, 2014, 42 (1): 126- 129.
doi: 10.3969/j.issn.1001-3539.2014.01.027
9 CHENG F W , JIANG Q B , ZHANG Z J . Research progress on wear-resisting modification of PEEK[J]. Engineering Plastics Application, 2014, 42 (1): 126- 129.
doi: 10.3969/j.issn.1001-3539.2014.01.027
10 宗倩颖, 叶霖, 张爱英, 等. 聚醚醚酮及其复合材料在生物医用领域的应用[J]. 合成树脂及塑料, 2016, 33 (3): 93- 96.
doi: 10.3969/j.issn.1002-1396.2016.03.022
10 ZONG Q Y , YE L , ZHANG A Y , et al. Applications of polyether ether ketone and its composites in biomedical field[J]. China Synthetic Resin and Plastics, 2016, 33 (3): 93- 96.
doi: 10.3969/j.issn.1002-1396.2016.03.022
11 KURTZ S M , DEVINE J N . PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28 (32): 4845- 4869.
doi: 10.1016/j.biomaterials.2007.07.013
12 韩成龙, 刘杨, 姜超, 等. 锚定聚醚醚酮融合器结合纳米人工骨治疗脊髓型颈椎病[J]. 中国组织工程研究, 2010, 14 (35): 6643- 6646.
doi: 10.3969/j.issn.1673-8225.2010.35.046
12 HAN C L , LIU Y , JIANG C , et al. Treatment of cervical spondylotic myelopathy by anchoring polyether-ether-ketone cage filled with nano-artificial bone[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14 (35): 6643- 6646.
doi: 10.3969/j.issn.1673-8225.2010.35.046
13 LEE W , KOAK J , LIM Y , et al. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2012, 100 (4): 1044- 1052.
14 PACE N , MARINELLI M , SPURIO S . Technical and histologic analysis of a retrieved carbon fiber-reinforced poly-ether-ether-ketone composite alumina-bearing liner 28 months after implantation[J]. Journal of Arthroplasty, 2008, 23 (1): 151- 155.
15 SCHOLE S C , UNSWORTH A . Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials[J]. J Mater Sci Mater Med, 2009, 20 (1): 163- 170.
doi: 10.1007/s10856-008-3558-3
16 李锋, 张克, 刘岩, 等. 保留髌骨膝关节置换的症状及影像学评价[J]. 中国组织工程研究, 2011, 15 (26): 4773- 4776.
doi: 10.3969/j.issn.1673-8225.2011.26.006
16 LI F , ZHANG K , LIU Y , et al. Radiological and functional evaluation during total knee replacement without patellar resurfacing[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15 (26): 4773- 4776.
doi: 10.3969/j.issn.1673-8225.2011.26.006
17 MAYASSI F , PAOLI T , CIVININI R , et al. Oxidized zirconium versus cobalt-chromium against the native patella in total knee arthroplasty:patellofemoral outcomes[J]. Knee, 2017, 24 (5): 1160- 1165.
doi: 10.1016/j.knee.2017.04.012
18 AIGNER T , MCKENNA L . Molecular pathology and pathobiology of osteoarthritic cartilage[J]. Cellular and Molecular Life Sciences CMLS, 2002, 59 (1): 5- 18.
doi: 10.1007/s00018-002-8400-3
19 MAROUDAS A , BULLOUGH P , SWANSON S A , et al. The permeability of articular cartilage[J]. Journal of Bone & Joint Surgery British Volume, 1968, 50 (1): 166- 177.
20 NORTHWOOD E , FISHER J . A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage[J]. Clinical Biomechanics, 2007, 22 (7): 834- 842.
doi: 10.1016/j.clinbiomech.2007.03.008
21 VANLOMMEL J , DE C R , LUYCKX J P , et al. Articulation of native cartilage against different femoral component materials, oxidized zirconium damages cartilage less than cobalt-chrome[J]. Journal of Arthroplasty, 2016, 32, 256- 262.
22 葛世荣, 王成焘. 人体生物摩擦学的研究现状与展望[J]. 摩擦学学报, 2005, 25 (2): 186- 191.
doi: 10.3321/j.issn:1004-0595.2005.02.020
22 GE S R , WANG C T . Research status and prospect of human biological tribology[J]. Journal of Tribology, 2005, 25 (2): 186- 191.
doi: 10.3321/j.issn:1004-0595.2005.02.020
23 JAHN S , SEROR J , KLEIN J . Lubrication of articular cartilage[J]. Annual Review of Biomedical Engineering, 2016, 18 (1): 235- 258.
doi: 10.1146/annurev-bioeng-081514-123305
24 KATTA J , PAWASKAR S S , JIN Z M , et al. Effect of load variation on the friction properties of articular cartilage[J]. Proceedings of the Institution of Mechanical Engineers-Part J, 2007, 221 (3): 175- 181.
doi: 10.1243/13506501JET240
25 TZANAKIS I , CONTE M , HADFIELD M , et al. Experimental and analytical thermal study of PTFE composite sliding against high carbon steel as a function of the surface roughness, sliding velocity and applied load[J]. Wear, 2013, 303 (1/2): 154- 168.
[1] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[2] 李新星, 王红侠, 施剑峰, 韩伯群. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48(10): 141-147.
[3] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[4] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[5] 樊浩, 邢丽, 叶寅, 柯黎明, 傅徐荣. 旋转摩擦挤压制备MWCNTs/Al复合材料的组织及磨损性能[J]. 材料工程, 2016, 44(10): 47-53.
[6] 汪怀远, 林珊, 张帅, 杨淑慧, 朱艳吉. 仿生多孔润滑耐磨CF/PTFE/PEEK复合材料的设计及其摩擦学性能[J]. 材料工程, 2014, 0(6): 45-50.
[7] 李奇, 王宪成, 蔡志海, 底月兰, 何星. null[J]. 材料工程, 2014, 0(6): 56-61.
[8] 李恩重, 徐滨士, 王海斗, 郭伟玲. 玻璃纤维增强聚醚醚酮复合材料在水润滑下的摩擦学性能[J]. 材料工程, 2014, 0(3): 77-82,89.
[9] 李恩重, 郭伟玲, 王海斗, 徐滨士. 聚醚醚酮摩擦学性能改性及其应用研究进展[J]. 材料工程, 2013, 0(1): 91-96.
[10] 袁华, 王成国, 卢文博, 张姗, 陈旸, 谢奔. 连续炭纤维增强受电弓滑板致密化及其性能[J]. 材料工程, 2012, 0(7): 5-9.
[11] 濮春欢, 徐滨士, 王海斗, 朴钟宇. 含磨粒润滑条件下3Cr13涂层加速磨损机理研究[J]. 材料工程, 2009, 0(12): 58-61,66.
[12] 项忠霞, 董刚, 林彬, 沈兆光. Si3N4陶瓷-冷激铸铁在微量润滑条件下的摩擦学特性[J]. 材料工程, 2006, 0(4): 24-27,32.
[13] 乔玉林, 梁志杰, 孙晓峰, 徐滨士, 小豆岛明. 在点线接触条件下钢/钢摩擦副的干摩擦高温减摩抗磨性能的研究[J]. 材料工程, 2005, 0(11): 9-12,31.
[14] 邓陈虹, 陈广志, 葛启录. 配对材料对锡青铜基颗粒增强复合材料摩擦磨损性能的影响[J]. 材料工程, 2005, 0(11): 28-31.
[15] 许忠斌, 益小苏, 吴舜英. 特种塑料PEEK纺丝机理和纺丝技术的研究进展[J]. 材料工程, 2000, 0(7): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn