Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 85-94    DOI: 10.11868/j.issn.1001-4381.2017.001530
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
喷雾干燥条件对合成纳/微结构LiFePO4/C形貌及性能的影响
吕奕菊1, 谭家栩1, 蒋世权1, 文衍宣2, 张淑芬1,3
1. 桂林理工大学 广西电磁化学功能物质重点实验室, 广西 桂林 541004;
2. 广西大学 化学化工学院, 南宁 530004;
3. 大连理工大学 精细化工重点实验室, 辽宁 大连 116024
Effects of Spray Drying Conditions on Morphology and Performance of Nano/Micro Structure LiFePO4/C
LYU Yi-ju1, TAN Jia-xu1, JIANG Shi-quan1, WEN Yan-xuan2, ZHANG Shu-fen1,3
1. Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, Guilin 541004, Guangxi, China;
2. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
3. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(104948 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用湿法球磨-喷雾干燥-碳热还原制备纳/微结构LiFePO4/C复合材料。通过XRD、SEM表征材料结构形貌,利用充放电测试循环伏安、交流阻抗测试等表征电化学性能,分别考察不同喷雾干燥条件对其形貌及性能的影响。结果表明:浆料浓度、进风温度、进料速率对材料形貌及性能影响较大,喷嘴口径对性能影响较小,随着浆料浓度的减小,所得样品由碗状结构转变为球形。最佳喷雾干燥条件为浆料浓度200g/L,进风温度200℃,进料速率1.3L/h,喷嘴口径0.5mm。此条件下制备的材料表现出最佳的放电比容量,常温下材料在0.5C倍率下的放电比容量为160mAh·g-1,10C放电比容量为123mAh·g-1,循环100次后容量几乎无衰减。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕奕菊
谭家栩
蒋世权
文衍宣
张淑芬
关键词 LiFePO4/C纳/微结构正极材料喷雾干燥    
Abstract:The nano/micro LiFePO4/C composite was prepared by a wet milling-spray drying-carbothermal reduction process. The structure and morphology were characterized by X-ray diffraction (XRD) and electron scanning microscope(SEM), electrochemical properties were characterized by cyclic voltammetry,AC impedance testing with galvanostatic charge-discharge method to investigate the influence under different spray drying conditions. The results show that the morpholoyy and electrochemical performance are significantly influenced by slurry concentration, inlet temperature and feed rate, while are mildly influenced by nozzle diameter. The morphology of the obtained sample is transformed from bowl-like mesoporous structure to spheres with the decrease of the slurry concentration. With a slurry concentration of 200g/L, an inlet temperature of 200℃, a feed rate of 1.3L/h and a spray nozzle diameter of 0.5mm, the obtained sample has the best electrochemical properties. Under that condition, the discharge capacities at 0.5C and 10C under room-temperature are 160mAh·g-1 and 123mAh·g-1, respectively, and no obvious capacity fading is observed after 100 cycles.
Key wordsLiFePO4/C    nano/micro structure    cathode material    spray drying
收稿日期: 2017-12-14      出版日期: 2018-12-18
中图分类号:  TM91  
通讯作者: 张淑芬(1960-),女,教授,博士,研究方向:精细化工,联系地址:广西省桂林市七星区建干路12号桂林理工大学化生学院(541004),E-mail:zhangshf@dlut.edu.cn     E-mail: zhangshf@dlut.edu.cn
引用本文:   
吕奕菊, 谭家栩, 蒋世权, 文衍宣, 张淑芬. 喷雾干燥条件对合成纳/微结构LiFePO4/C形貌及性能的影响[J]. 材料工程, 2018, 46(12): 85-94.
LYU Yi-ju, TAN Jia-xu, JIANG Shi-quan, WEN Yan-xuan, ZHANG Shu-fen. Effects of Spray Drying Conditions on Morphology and Performance of Nano/Micro Structure LiFePO4/C. Journal of Materials Engineering, 2018, 46(12): 85-94.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001530      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/85
[1] DONG B,HUANG X,YANG X,et al. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor[J]. Ultrason Sonochem,2017,39:816-826.
[2] PADHI A K.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].J Electrochem Soc,1997,144(4):1188-1194.
[3] BAO L,XU G,SUN X,et al.Mono-dispersed LiFePO4@C core-shell
[001] nanorods for a high power Li-ion battery cathode[J].J Alloy Compd,2017,708(Suppl C):685-693.
[4] GONG C,XUE Z,WEN S,et al.Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries[J].J Power Sources,2016,318(Suppl C):93-112.
[5] YUAN L,WANG Z,ZHANG W,et al.Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J].Energ Environ Sci,2011,4(2):269-284.
[6] LI Y,FU Z,SU B.Hierarchically structured porous materials for energy conversion and storage[J].Adv Funct Mater,2012,22(22):4634-4667.
[7] GONG H,XUE H,WANG T,et al.In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries[J].J Power Sources,2016,318:220-227.
[8] DENG H,JIN S,ZHAN L,et al.Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries[J].J Power Sources,2012,220:342-347.
[9] ZHAO T,JI X,BI P,et al.In situ synthesis of interlinked three-dimensional graphene foam/polyaniline nanorod supercapacitor[J].Electrochim Acta,2017,230:342-349.
[10] 蒋庆来.浆料喷雾干燥法制备球形锰酸锂正极材料及其改性研究[D].长沙:中南大学,2011. JIANG Q L.Synthesis and modification research of spherical LiMn2O4 cathode materials based on slurry spray drying method[D].Changsha:Central South University,2011.
[11] NANDIYANTO A B D,OKUYAMA K.Progress in developing spray-drying methods for the production of controlled morphology particles:from the nanometer to submicrometer size ranges[J].Adv Powder Technol,2011,22(1):1-19.
[12] 刘全兵.锂离子电池正极材料的制备及其性能研究[D].广州:华南理工大学,2012. LIU Q B.Preparation of cathode materials for llithium-ion battery and its performance[D].Guangzhou:South China University of Technology,2012.
[13] LUO S H,TANG Z L,LU J B,et al.A novel synthetic route for LiFePO4/C cathode materials by addition of starch for lithium-ion batteries[J].Chinese Chem Lett,2007,18(2):237-240.
[14] ISKANDAR F,GRADON L,OKUYAMA K.Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol[J].J Colloid Interf Sci,2003,265(2):296-303.
[15] GUAN X,LI G,LI C,et al.Synthesis of porous nano/micro structured LiFePO4/C cathode materials for lithium-ion batteries by spray-drying method[J].T Nonferr Metal Soc,2017,27(1):141-147.
[16] YU F,ZHANG J,YANG Y,et al.Porous micro-spherical aggregates of LiFePO4/C nanocomposites:a novel and simple template-free concept and synthesis via sol-gel-spray drying method[J].J Power Sources,2010,195(19):6873-6878.
[17] HWANG J,KONG K C,CHANG W,et al.New liquid carbon dioxide based strategy for high energy/power density LiFePO4[J].Nano Energy,2017,36:398-410.
[18] GOLESTANI E,JAVANBAKHT M,GHAFARIAN-ZAHMATKESH H, et al.Tartaric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution[J].Electrochim Acta,2018,259:903-915.
[19] ZHAO T,SHE S,JI X,et al.In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J].J Alloy Compd,2017,708:500-507.
[20] ZHAO T,GUO S,JI X,et al.Three-dimensional heterostructured MnO2/graphene/carbon nanotube composite on Ni foam for binder-free supercapacitor electrode[J].Fullerenes,Nanotubes and Carbon Nanostructures,2017,25(6):391-396.
[21] 余红明.LiFePO4的碳包覆优化和中试研究[D].杭州:浙江大学,2011. YU H M.Optimization of carbon coating of LiFePO4 and pilot plant test[D].Hangzhou:Zhejiang University,2011.
[22] LIU Q,LIAO S,SONG H,et al.High-performance LiFePO4/C materials:effect of carbon source on microstructure and performance[J].J Power Sources,2012,211:52-58.
[1] 陈鹏, 朱小刚, 吴甲民, 王联凤, 史玉升. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47(3): 87-93.
[2] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[3] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[4] 闫时建, 郝豫宝, 郭锦, 张敏刚. 正极材料不同配比对锂硫电池性能的影响机理[J]. 材料工程, 2018, 46(11): 71-76.
[5] 董鹏, 张英杰, 刘嘉铭, 李雪. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11): 49-57.
[6] 郝素叶, 万隆, 王俊沙, 宋冬冬, 胡伟达, 张磊欣. 喷雾干燥法金刚石-陶瓷结合剂复合烧结体的制备及表征[J]. 材料工程, 2016, 44(8): 58-63.
[7] 夏傲, 于婉茹, 谈国强. 葡萄糖对微波水热合成正极材料LiFePO4的结构和性能的影响[J]. 材料工程, 2016, 44(10): 68-73.
[8] 朱靖, 刘永光, 赵艳琴, 王岭. 熔盐法制备梯度型LiNixCoyMn1-x-yO2电极材料的研究[J]. 材料工程, 2012, 0(3): 8-11.
[9] 黄威, 朱颖, 何箐, 汪瑞军. 纳米YSZ热喷涂粉末的制备及其性能[J]. 材料工程, 2010, 0(10): 86-88,95.
[10] 傅宪辉, 沈志刚, 蔡楚江, 麻树林, 邢玉山. 制备参数对喷雾干燥的磷铵灭火粉性能的影响[J]. 材料工程, 2008, 0(12): 65-69.
[11] 杨威, 曹传堂, 曹传宝. 共沉淀法制备锂离子电池正极材料LiFePO4及其性能研究[J]. 材料工程, 2005, 0(6): 36-40.
[12] 张娜, 唐致远, 卢星河. 尖晶石LiMn1.98RE0.02O4(RE=Ce,Nd)及其性能研究[J]. 材料工程, 2005, 0(11): 35-37,63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn