Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 79-85    DOI: 10.11868/j.issn.1001-4381.2017.001538
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超声振动对EA4T钢激光熔覆质量和性能的影响
陈林1, 陈文静1, 黄强2, 熊中1
1. 西华大学 材料科学与工程学院, 成都 610039;
2. 重庆川仪十七厂有限公司, 重庆 400700
Effect of ultrasonic vibration on quality and properties of laser cladding EA4T steel
CHEN Lin1, CHEN Wen-jing1, HUANG Qiang2, XIONG Zhong1
1. School of Materials Science and Engineering, Xihua University, Chengdu 610039, China;
2. Chongqing Chuanyi Instrument No. 17 Factory Co., Ltd., Chongqing 400700, China
全文: PDF(12353 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用超声振动辅助激光熔覆对EA4T钢表面进行修复,利用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射仪(XRD),对比分析超声振动对EA4T钢激光熔覆成形质量、微观组织和物相组成的影响,通过显微硬度仪对熔覆层和基体的显微硬度进行测试。结果表明:超声振动作用下,熔覆层成形质量得到提高,原来方向性较强的枝晶组织被打断、打碎,枝晶偏析程度显著减轻;与此同时,施加超声振动晶粒得到细化,促进Cr23C6碳化物在枝晶上析出,但并未改变熔覆层物相组成;相比较未施加超声振动,超声振动作用下的熔覆层显微硬度分布更加均匀,平均显微硬度提高126.2HV0.2,热影响区平均显微硬度下降31.2HV0.2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈林
陈文静
黄强
熊中
关键词 激光熔覆超声振动组织结构显微硬度    
Abstract:The surface of EA4T steel was repaired by ultrasonic vibration assisted laser cladding.The influence of ultrasonic vibration on the forming quality, microstructure and phase composition of laser cladding of EA4T steel were compared and analyzed by optical microscopy (OM),scanning electron microscopy(SEM),X ray diffraction(XRD),and the microhardness of the cladding layer and matrix was tested by microhardness tester.The results show that the cladding forming quality is improved, and the dendritic structure with strong original orientation is broken under the effect of ultrasonic vibration,which reduces the segregation of dendrites within the cladding layer.At the same time,ultrasonic vibration refined grain, promotes the precipitation of Cr23C6 carbide on the dendrites, but it does not change the phase composition of cladding layer.Compared with that without ultrasonic vibration applied,the microhardness distribution of cladding layer is more uniform under the ultrasonic vibration, the average microhardness of cladding layer is increased by 126.2HV0.2,and the average microhardness of heat-affected zone is decreased by 31.2HV0.2.
Key wordslaser cladding    ultrasonic vibration    microstructure    microhardness
收稿日期: 2017-12-15      出版日期: 2019-05-17
中图分类号:  TG456.7  
通讯作者: 陈文静(1971-),女,高级工程师,博士,主要从事激光熔覆再制造技术、新材料焊接工艺及接头质量控制方面的研究,联系地址:四川省成都市金牛区金周路999号材料学院,E-mail:njchenwenjing@163.com     E-mail: njchenwenjing@163.com
引用本文:   
陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
CHEN Lin, CHEN Wen-jing, HUANG Qiang, XIONG Zhong. Effect of ultrasonic vibration on quality and properties of laser cladding EA4T steel. Journal of Materials Engineering, 2019, 47(5): 79-85.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001538      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/79
[1] XU G,WANG L N,LI S Q,et al. Hot deformation behavior of EA4T steel[J]. Acta Metallurgicǎ Sinica,2012,25(5):374-382.
[2] VARFOLOMEEV I,LUKE M,BURDACK M. Effect of speci-men geometry on fatigue crack growth rates for the railway axle material EA4T[J]. Engineering Fracture Mechanics,2011,78(5):742-753.
[3] ZHENG J F,LUO J,MO J L,et al. Fretting wear behaviors of a railway axle steel[J]. Tribology International,2010,43(5):906-911.
[4] LINHART V,?ERNY I. An effect of strength of railway axle steels on fatigue resistance under press fit[J]. Engineering Fract-ure Mechanics,2011,78(5):731-741.
[5] XU B S,WANG H D,MA G Z. Advanced surface engineering technologies for remanufacturing forming[J]. Rare Metal Materials and Engineering,2012,41(Suppl 1):1-5.
[6] 闫世兴,董世运,徐滨士,等. Fe314合金激光熔覆工艺优化与表征研究[J]. 红外与激光工程,2011,40(2):235-240. YAN S X,DONG S Y,XU B S,et al. Characterization and optimi-zation of process in laser cladding Fe314 alloy[J]. Infrared and Laser Engineering,2011,40(2):235-240.
[7] LIU J C,LI L J. In-time motion adjustment in laser cladding man-ufacturing process for improving dimensional accuracy and surface finish of the formed part[J]. Optics & Laser Technology,2004,36(6):477-483.
[8] 曾维华,刘洪喜,王传琦,等.工艺参数对不锈钢表面激光熔覆Ni基涂层组织及耐腐蚀性能的影响[J]. 材料工程,2012(8):24-29. ZENG W H,LIU H X,WANG C Q,et al. Effects of technological parameters on microstructure and corrosion resistance of laser cladding Ni-based coating on stainless steel surface[J]. Journal of Materials Engineering,2012(8):24-29.
[9] PRAKASH K,SANTANU P,RAMESH S,et al. Experimental characterization of laser cladding of CPM9V on H13 tool steel for die repair applications[J]. Journal of Manufacturing Processes,2015,20:492-499.
[10] TOMS T,GUNTIS P,ANDRIS R,et al. Development of techn-ological equipment to laboratory test in-situ laser cladding for marine engine crankshaft renovation[J]. Procedia Engineering,2015,100:559-568.
[11] XIONG J,FAN J C,JV Y. The Application and the prospect of remanufacturing technologies in the metallurgical industry[J]. Frontiers of Engineering Management,2016,3(2):165-170.
[12] 李桂花,邹勇,邹增大,等.激光熔覆原位生成Nb2(C,N)及V8C7陶瓷粒子增强铁基金属涂层[J]. 材料工程,2012(1):29-33. LI G H,ZOU Y,ZOU Z D,et al. In-situ synthesized Nb2(C,N) and V8C7 ceramics particulates reinforced Fe-based composite coating by laser cladding[J]. Journal of Materials Engineering,2012(1):29-33.
[13] 闫世兴,董世运,徐滨士,等.预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程,2016,44(1):30-36. YAN S X,DONG S Y,XU B S,et al. Effect of preheating tem-perature on microstructure and property of laser clad Ni-based alloy coating[J]. Journal of Materials Engineering,2016,44(1):30-36.
[14] GAO W Y,ZHANG Z Y,ZHAO S S,et al.Effect of a small ad-dition of Ti on the Fe-based coating by laser cladding[J].Surface & Coatings Technology,2016,291:423-429.
[15] 陈学永,史恩秀,TODD S,等.基于超声振动的激光金属堆积机理研究分析[J]. 中国机械工程,2015,26(2):200-203. CHEN X Y,SHI E X,TODD S,et al.Study on mechanism of laser metal deposition based on ultrasonic vibration[J]. China Mechanical Engineering,2015,26(2):200-203.
[16] SURESH N,CHARRASIC P.Microstructure and mechanical properties of castings under vibration techniques-a review[J]. Applied Mechanics and Materials,2014,550:71-80.
[17] METHONG T,POOPAT B.The effect of ultrasonic vibration on properties of weld metal[J]. Key Engineering Materials,2013,545:177-181.
[18] 曾大文,谢长生.激光熔覆熔池二维准稳态流场及温度场的数值模拟[J]. 金属学报,1999,35(6):604-607. ZENG D W,XIE C S.A numberical simulation for two dimen-sional and temperature field in the molten pool of laser cladding[J]. Acta Metallurgica Sinica,1999,35(6):604-607.
[19] 刘振侠.激光熔凝和激光熔覆的数学模型及数值分析[D]. 西安:西北工业大学,2003. LIU Z X. Modeling and numerical simulation on laser remelting and cladding[D]. Xi'an:Northwestern Polytechnical Univer-sity,2003.
[20] 闫世兴,董世运,徐滨士,等.激光熔覆过程中熔池对流运动对熔覆层气孔和元素分布的影响[J]. 红外与激光工程,2014,43(9):2832-2839. YAN S X,DONG S Y,XU B S,et al. Effect of molten pool convection on pores and elements distribution in the process of laser cladding[J]. Infrared and Laser Engineering,2014,43(9):2832-2839.
[21] 王维,岳耀猛,杨光,等.超声振动对激光熔凝熔池影响研究[J]. 中国激光,2015,42(11):93-100. WANG W,YUE Y M,YANG G,et al. Influence of ultrasonic vibration on melt pool in laser melting proces[J]. Chinese Jour-nal of Lasers,2015,42(11):93-100.
[22] 李红,李灿,栗卓新.功率超声在金属熔体成形中的作用效应及其可视化研究进展[J]. 材料工程,2017,45(5):118-126. LI H,LI C,LI Z X. Progress in power ultrasound effect on mol-ten metal shaping and its visualization[J].Journal of Materials Engineering,2017,45(5):118-126.
[23] 李德英,赵志龙,张坚,等.超声振动对激光熔覆TiC/FeAl复合涂层温度场的影响[J]. 金属热处理,2015,40(3):190-195. LI D Y,ZHAO Z L,ZHANG J,et al.Influence of ultrasonic vibration on temperature field of TiC/FeAl composite coating in laser cladding[J]. Heat Treatment of Metals,2015,40(3):190-195.
[24] DRIDI W,HENRY D,BEN H H. Influence of acoustic strea-ming on the stability of melt flows in horizontal bridgman config-urations[J]. Journal of Crystal Growth,2008,310(7):1546-1551.
[25] 刘红喜,陶喜德,张晓伟,等.机械振动辅助激光熔覆Fe-Cr-Si-B-C涂层的显微组织及界面分布形态[J]. 光学机械,2015,23(8):2192-2202. LIU H X,TAO X D,ZHANG X W,et al.Microstructure and in-terface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J]. Optics and Precision Engi-neering,2015,23(8):2192-2202.
[26] WU D J,GUO M H,MA G Y,et al.Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters,2015,141:207-209.
[27] 王维,郭鹏飞,张建中,等.超声波对BT20钛合金激光熔覆过程的作用[J]. 中国激光,2013,40(8):65-69. WANG W,GUO P F,ZHANG J Z,et al.Ultrasonic effect on laser cladding BT20 titanium alloy process[J]. Chinese Journal of Lasers,2013,40(8):65-69.
[28] 郄喜望,李捷,马晓东,等.超声场作用下Al-Si合金的除气效果及晶粒细化[J]. 金属学报,2008,44(4):414-418. QIE X W,LI J,MA X D,et al.Degassing effect and grain refine-ment of Al-Si alloy under ultrasound field[J]. Acta Metallurgica Sinica,2008,44(4):414-418.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[3] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[4] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[5] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[6] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[7] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[8] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[9] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[10] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[11] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[12] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[13] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[14] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[15] 乔及森, 向阳芷, 聂书才, 张涵. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45(11): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn