Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (5): 79-85    DOI: 10.11868/j.issn.1001-4381.2017.001538
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超声振动对EA4T钢激光熔覆质量和性能的影响
陈林1, 陈文静1,*(), 黄强2, 熊中1
1 西华大学 材料科学与工程学院, 成都 610039
2 重庆川仪十七厂有限公司, 重庆 400700
Effect of ultrasonic vibration on quality and properties of laser cladding EA4T steel
Lin CHEN1, Wen-jing CHEN1,*(), Qiang HUANG2, Zhong XIONG1
1 School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
2 Chongqing Chuanyi Instrument No. 17 Factory Co., Ltd., Chongqing 400700, China
全文: PDF(12353 KB)   HTML ( 15 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用超声振动辅助激光熔覆对EA4T钢表面进行修复,利用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射仪(XRD),对比分析超声振动对EA4T钢激光熔覆成形质量、微观组织和物相组成的影响,通过显微硬度仪对熔覆层和基体的显微硬度进行测试。结果表明:超声振动作用下,熔覆层成形质量得到提高,原来方向性较强的枝晶组织被打断、打碎,枝晶偏析程度显著减轻;与此同时,施加超声振动晶粒得到细化,促进Cr23C6碳化物在枝晶上析出,但并未改变熔覆层物相组成;相比较未施加超声振动,超声振动作用下的熔覆层显微硬度分布更加均匀,平均显微硬度提高126.2HV0.2,热影响区平均显微硬度下降31.2HV0.2

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈林
陈文静
黄强
熊中
关键词 激光熔覆超声振动组织结构显微硬度    
Abstract

The surface of EA4T steel was repaired by ultrasonic vibration assisted laser cladding.The influence of ultrasonic vibration on the forming quality, microstructure and phase composition of laser cladding of EA4T steel were compared and analyzed by optical microscopy (OM), scanning electron microscopy(SEM), X ray diffraction(XRD), and the microhardness of the cladding layer and matrix was tested by microhardness tester.The results show that the cladding forming quality is improved, and the dendritic structure with strong original orientation is broken under the effect of ultrasonic vibration, which reduces the segregation of dendrites within the cladding layer.At the same time, ultrasonic vibration refined grain, promotes the precipitation of Cr23C6 carbide on the dendrites, but it does not change the phase composition of cladding layer.Compared with that without ultrasonic vibration applied, the microhardness distribution of cladding layer is more uniform under the ultrasonic vibration, the average microhardness of cladding layer is increased by 126.2HV0.2, and the average microhardness of heat-affected zone is decreased by 31.2HV0.2.

Key wordslaser cladding    ultrasonic vibration    microstructure    microhardness
收稿日期: 2017-12-15      出版日期: 2019-05-17
中图分类号:  TG456.7  
基金资助:四川省科技厅资助项目(14201508);中国石油集团济柴动力总厂项目(16201253)
通讯作者: 陈文静     E-mail: njchenwenjing@163.com
作者简介: 陈文静(1971-), 女, 高级工程师, 博士, 主要从事激光熔覆再制造技术、新材料焊接工艺及接头质量控制方面的研究, 联系地址:四川省成都市金牛区金周路999号材料学院, E-mail:njchenwenjing@163.com
引用本文:   
陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
Lin CHEN, Wen-jing CHEN, Qiang HUANG, Zhong XIONG. Effect of ultrasonic vibration on quality and properties of laser cladding EA4T steel. Journal of Materials Engineering, 2019, 47(5): 79-85.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001538      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/79
Fig.1  EA4T钢显微组织和Fe-Cr-Ni合金粉末外观形貌
(a)EA4T钢; (b)Fe-Cr-Ni合金粉末
Material C Cr Si Ni B Mn Mo Cu S P Fe
EA4T steel 0.25 1.04 0.34 0.26 - 0.74 0.25 0.15 0.002 0.008 Bal
Fe-Cr-Ni 0.10 17.50 0.12 10.50 0.65 - - - - - Bal
Table 1  EA4T钢和Fe-Cr-Ni熔覆材料化学成分(质量分数/%)
Experiment Ultrasoundcurrent/A Laserpower/kW Powder feedingvoltage/V Scanningspeed/(mm·s -1) Flow rateof powder/(g·min -1) Overlapratio/% Laserspot diameter/mm
1 0 2.1 3.0 5.0 19.6 50 4.0
2 2.5 2.1 3.0 5.0 19.6 50 4.0
Table 2  熔覆实验参数
Fig.2  超声振动辅助激光熔覆示意图
Fig.3  熔覆层外观形貌
(a)未施加超声振动; (b)施加超声振动
Fig.4  未施加超声振动熔覆层显微组织
(a)界面;(b)中部;(c)热影响区
Fig.5  施加超声振动熔覆层显微组织
(a)界面;(b)中部;(c)热影响区
Fig.6  未施加超声振动熔覆层中部枝晶组织EDS分析
(a)晶界;(b)晶内
Fig.7  施加超声振动熔覆层中部枝晶组织EDS分析
(a)晶界;(b)粒状结构;(c)晶内
Fig.8  熔覆层XRD图谱
Millerindex Ultrasonicvibration 2θ/(°) FWHM/rad
(110) Without 44.629 0.269
With 44.630 0.277
(211) Without 82.222 0.420
With 82.248 0.449
Table 3  XRD测试结果
Fig.9  显微硬度分布曲线
(a)未施加超声振动;(b)施加超声振动
1 XU G , WANG L N , LI S Q , et al. Hot deformation behavior of EA4T steel[J]. Acta Metallurgicǎ Sinica, 2012, 25 (5): 374- 382.
2 VARFOLOMEEV I , LUKE M , BURDACK M . Effect of speci-men geometry on fatigue crack growth rates for the railway axle material EA4T[J]. Engineering Fracture Mechanics, 2011, 78 (5): 742- 753.
doi: 10.1016/j.engfracmech.2010.11.011
3 ZHENG J F , LUO J , MO J L , et al. Fretting wear behaviors of a railway axle steel[J]. Tribology International, 2010, 43 (5): 906- 911.
4 LINHART V , ČERNY I . An effect of strength of railway axle steels on fatigue resistance under press fit[J]. Engineering Fract-ure Mechanics, 2011, 78 (5): 731- 741.
doi: 10.1016/j.engfracmech.2010.11.023
5 XU B S , WANG H D , MA G Z . Advanced surface engineering technologies for remanufacturing forming[J]. Rare Metal Materials and Engineering, 2012, 41 (Suppl 1): 1- 5.
6 闫世兴, 董世运, 徐滨士, 等. Fe314合金激光熔覆工艺优化与表征研究[J]. 红外与激光工程, 2011, 40 (2): 235- 240.
doi: 10.3969/j.issn.1007-2276.2011.02.012
6 YAN S X , DONG S Y , XU B S , et al. Characterization and optimi-zation of process in laser cladding Fe314 alloy[J]. Infrared and Laser Engineering, 2011, 40 (2): 235- 240.
doi: 10.3969/j.issn.1007-2276.2011.02.012
7 LIU J C , LI L J . In-time motion adjustment in laser cladding man-ufacturing process for improving dimensional accuracy and surface finish of the formed part[J]. Optics & Laser Technology, 2004, 36 (6): 477- 483.
8 曾维华, 刘洪喜, 王传琦, 等. 工艺参数对不锈钢表面激光熔覆Ni基涂层组织及耐腐蚀性能的影响[J]. 材料工程, 2012, (8): 24- 29.
doi: 10.3969/j.issn.1001-4381.2012.08.006
8 ZENG W H , LIU H X , WANG C Q , et al. Effects of technological parameters on microstructure and corrosion resistance of laser cladding Ni-based coating on stainless steel surface[J]. Journal of Materials Engineering, 2012, (8): 24- 29.
doi: 10.3969/j.issn.1001-4381.2012.08.006
9 PRAKASH K , SANTANU P , RAMESH S , et al. Experimental characterization of laser cladding of CPM9V on H13 tool steel for die repair applications[J]. Journal of Manufacturing Processes, 2015, 20, 492- 499.
doi: 10.1016/j.jmapro.2015.06.018
10 TOMS T , GUNTIS P , ANDRIS R , et al. Development of techn-ological equipment to laboratory test in-situ laser cladding for marine engine crankshaft renovation[J]. Procedia Engineering, 2015, 100, 559- 568.
doi: 10.1016/j.proeng.2015.01.405
11 XIONG J , FAN J C , JV Y . The Application and the prospect of remanufacturing technologies in the metallurgical industry[J]. Frontiers of Engineering Management, 2016, 3 (2): 165- 170.
12 李桂花, 邹勇, 邹增大, 等. 激光熔覆原位生成Nb2(C, N)及V8C7陶瓷粒子增强铁基金属涂层[J]. 材料工程, 2012, (1): 29- 33.
doi: 10.3969/j.issn.1001-4381.2012.01.007
12 LI G H , ZOU Y , ZOU Z D , et al. In-situ synthesized Nb2(C, N) and V8C7 ceramics particulates reinforced Fe-based composite coating by laser cladding[J]. Journal of Materials Engineering, 2012, (1): 29- 33.
doi: 10.3969/j.issn.1001-4381.2012.01.007
13 闫世兴, 董世运, 徐滨士, 等. 预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程, 2016, 44 (1): 30- 36.
13 YAN S X , DONG S Y , XU B S , et al. Effect of preheating tem-perature on microstructure and property of laser clad Ni-based alloy coating[J]. Journal of Materials Engineering, 2016, 44 (1): 30- 36.
14 GAO W Y , ZHANG Z Y , ZHAO S S , et al. Effect of a small ad-dition of Ti on the Fe-based coating by laser cladding[J]. Surface & Coatings Technology, 2016, 291, 423- 429.
15 陈学永, 史恩秀, TODDS, 等. 基于超声振动的激光金属堆积机理研究分析[J]. 中国机械工程, 2015, 26 (2): 200- 203.
doi: 10.3969/j.issn.1004-132X.2015.02.013
15 CHEN X Y , SHI E X , TODD S , et al. Study on mechanism of laser metal deposition based on ultrasonic vibration[J]. China Mechanical Engineering, 2015, 26 (2): 200- 203.
doi: 10.3969/j.issn.1004-132X.2015.02.013
16 SURESH N , CHARRASIC P . Microstructure and mechanical properties of castings under vibration techniques-a review[J]. Applied Mechanics and Materials, 2014, 550, 71- 80.
doi: 10.4028/www.scientific.net/AMM.550
17 METHONG T , POOPAT B . The effect of ultrasonic vibration on properties of weld metal[J]. Key Engineering Materials, 2013, 545, 177- 181.
doi: 10.4028/www.scientific.net/KEM.545
18 曾大文, 谢长生. 激光熔覆熔池二维准稳态流场及温度场的数值模拟[J]. 金属学报, 1999, 35 (6): 604- 607.
18 ZENG D W , XIE C S . A numberical simulation for two dimen-sional and temperature field in the molten pool of laser cladding[J]. Acta Metallurgica Sinica, 1999, 35 (6): 604- 607.
19 刘振侠.激光熔凝和激光熔覆的数学模型及数值分析[D].西安: 西北工业大学, 2003.
19 LIU Z X. Modeling and numerical simulation on laser remelting and cladding[D]. Xi'an: Northwestern Polytechnical Univer-sity, 2003.
20 闫世兴, 董世运, 徐滨士, 等. 激光熔覆过程中熔池对流运动对熔覆层气孔和元素分布的影响[J]. 红外与激光工程, 2014, 43 (9): 2832- 2839.
doi: 10.3969/j.issn.1007-2276.2014.09.009
20 YAN S X , DONG S Y , XU B S , et al. Effect of molten pool convection on pores and elements distribution in the process of laser cladding[J]. Infrared and Laser Engineering, 2014, 43 (9): 2832- 2839.
doi: 10.3969/j.issn.1007-2276.2014.09.009
21 王维, 岳耀猛, 杨光, 等. 超声振动对激光熔凝熔池影响研究[J]. 中国激光, 2015, 42 (11): 93- 100.
21 WANG W , YUE Y M , YANG G , et al. Influence of ultrasonic vibration on melt pool in laser melting proces[J]. Chinese Jour-nal of Lasers, 2015, 42 (11): 93- 100.
22 李红, 李灿, 栗卓新. 功率超声在金属熔体成形中的作用效应及其可视化研究进展[J]. 材料工程, 2017, 45 (5): 118- 126.
22 LI H , LI C , LI Z X . Progress in power ultrasound effect on mol-ten metal shaping and its visualization[J]. Journal of Materials Engineering, 2017, 45 (5): 118- 126.
23 李德英, 赵志龙, 张坚, 等. 超声振动对激光熔覆TiC/FeAl复合涂层温度场的影响[J]. 金属热处理, 2015, 40 (3): 190- 195.
23 LI D Y , ZHAO Z L , ZHANG J , et al. Influence of ultrasonic vibration on temperature field of TiC/FeAl composite coating in laser cladding[J]. Heat Treatment of Metals, 2015, 40 (3): 190- 195.
24 DRIDI W , HENRY D , BEN H H . Influence of acoustic strea-ming on the stability of melt flows in horizontal bridgman config-urations[J]. Journal of Crystal Growth, 2008, 310 (7): 1546- 1551.
25 刘红喜, 陶喜德, 张晓伟, 等. 机械振动辅助激光熔覆Fe-Cr-Si-B-C涂层的显微组织及界面分布形态[J]. 光学机械, 2015, 23 (8): 2192- 2202.
25 LIU H X , TAO X D , ZHANG X W , et al. Microstructure and in-terface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J]. Optics and Precision Engi-neering, 2015, 23 (8): 2192- 2202.
26 WU D J , GUO M H , MA G Y , et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141, 207- 209.
doi: 10.1016/j.matlet.2014.11.058
27 王维, 郭鹏飞, 张建中, 等. 超声波对BT20钛合金激光熔覆过程的作用[J]. 中国激光, 2013, 40 (8): 65- 69.
27 WANG W , GUO P F , ZHANG J Z , et al. Ultrasonic effect on laser cladding BT20 titanium alloy process[J]. Chinese Journal of Lasers, 2013, 40 (8): 65- 69.
28 郄喜望, 李捷, 马晓东, 等. 超声场作用下Al-Si合金的除气效果及晶粒细化[J]. 金属学报, 2008, 44 (4): 414- 418.
doi: 10.3321/j.issn:0412-1961.2008.04.006
28 QIE X W , LI J , MA X D , et al. Degassing effect and grain refine-ment of Al-Si alloy under ultrasound field[J]. Acta Metallurgica Sinica, 2008, 44 (4): 414- 418.
doi: 10.3321/j.issn:0412-1961.2008.04.006
[1] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[2] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[3] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[4] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[5] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[6] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[7] 吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
[8] 石磊, 戴翔, 武传松, 傅莉. 2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究[J]. 材料工程, 2021, 49(5): 122-129.
[9] 王鑫, 万义兴, 张平, 单彩霞, 谢莹莹, 梁秀兵. 难熔高熵合金NbMoTaWTi/Zr的高温氧化行为[J]. 材料工程, 2021, 49(12): 100-106.
[10] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[11] 王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
[12] 张天刚, 姚波, 张志强, 刘亚楠, 薛鹏. Ni-石墨含量对TC4钛合金表面自润滑耐磨熔覆层组织与摩擦学性能的影响[J]. 材料工程, 2021, 49(10): 104-115.
[13] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[14] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[15] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn