Effect of ultrasonic vibration on quality and properties of laser cladding EA4T steel
Lin CHEN1, Wen-jing CHEN1,*(), Qiang HUANG2, Zhong XIONG1
1 School of Materials Science and Engineering, Xihua University, Chengdu 610039, China 2 Chongqing Chuanyi Instrument No. 17 Factory Co., Ltd., Chongqing 400700, China
The surface of EA4T steel was repaired by ultrasonic vibration assisted laser cladding.The influence of ultrasonic vibration on the forming quality, microstructure and phase composition of laser cladding of EA4T steel were compared and analyzed by optical microscopy (OM), scanning electron microscopy(SEM), X ray diffraction(XRD), and the microhardness of the cladding layer and matrix was tested by microhardness tester.The results show that the cladding forming quality is improved, and the dendritic structure with strong original orientation is broken under the effect of ultrasonic vibration, which reduces the segregation of dendrites within the cladding layer.At the same time, ultrasonic vibration refined grain, promotes the precipitation of Cr23C6 carbide on the dendrites, but it does not change the phase composition of cladding layer.Compared with that without ultrasonic vibration applied, the microhardness distribution of cladding layer is more uniform under the ultrasonic vibration, the average microhardness of cladding layer is increased by 126.2HV0.2, and the average microhardness of heat-affected zone is decreased by 31.2HV0.2.
XU G , WANG L N , LI S Q , et al. Hot deformation behavior of EA4T steel[J]. Acta Metallurgicǎ Sinica, 2012, 25 (5): 374- 382.
2
VARFOLOMEEV I , LUKE M , BURDACK M . Effect of speci-men geometry on fatigue crack growth rates for the railway axle material EA4T[J]. Engineering Fracture Mechanics, 2011, 78 (5): 742- 753.
doi: 10.1016/j.engfracmech.2010.11.011
3
ZHENG J F , LUO J , MO J L , et al. Fretting wear behaviors of a railway axle steel[J]. Tribology International, 2010, 43 (5): 906- 911.
4
LINHART V , ČERNY I . An effect of strength of railway axle steels on fatigue resistance under press fit[J]. Engineering Fract-ure Mechanics, 2011, 78 (5): 731- 741.
doi: 10.1016/j.engfracmech.2010.11.023
5
XU B S , WANG H D , MA G Z . Advanced surface engineering technologies for remanufacturing forming[J]. Rare Metal Materials and Engineering, 2012, 41 (Suppl 1): 1- 5.
YAN S X , DONG S Y , XU B S , et al. Characterization and optimi-zation of process in laser cladding Fe314 alloy[J]. Infrared and Laser Engineering, 2011, 40 (2): 235- 240.
doi: 10.3969/j.issn.1007-2276.2011.02.012
7
LIU J C , LI L J . In-time motion adjustment in laser cladding man-ufacturing process for improving dimensional accuracy and surface finish of the formed part[J]. Optics & Laser Technology, 2004, 36 (6): 477- 483.
ZENG W H , LIU H X , WANG C Q , et al. Effects of technological parameters on microstructure and corrosion resistance of laser cladding Ni-based coating on stainless steel surface[J]. Journal of Materials Engineering, 2012, (8): 24- 29.
doi: 10.3969/j.issn.1001-4381.2012.08.006
9
PRAKASH K , SANTANU P , RAMESH S , et al. Experimental characterization of laser cladding of CPM9V on H13 tool steel for die repair applications[J]. Journal of Manufacturing Processes, 2015, 20, 492- 499.
doi: 10.1016/j.jmapro.2015.06.018
10
TOMS T , GUNTIS P , ANDRIS R , et al. Development of techn-ological equipment to laboratory test in-situ laser cladding for marine engine crankshaft renovation[J]. Procedia Engineering, 2015, 100, 559- 568.
doi: 10.1016/j.proeng.2015.01.405
11
XIONG J , FAN J C , JV Y . The Application and the prospect of remanufacturing technologies in the metallurgical industry[J]. Frontiers of Engineering Management, 2016, 3 (2): 165- 170.
LI G H , ZOU Y , ZOU Z D , et al. In-situ synthesized Nb2(C, N) and V8C7 ceramics particulates reinforced Fe-based composite coating by laser cladding[J]. Journal of Materials Engineering, 2012, (1): 29- 33.
doi: 10.3969/j.issn.1001-4381.2012.01.007
YAN S X , DONG S Y , XU B S , et al. Effect of preheating tem-perature on microstructure and property of laser clad Ni-based alloy coating[J]. Journal of Materials Engineering, 2016, 44 (1): 30- 36.
14
GAO W Y , ZHANG Z Y , ZHAO S S , et al. Effect of a small ad-dition of Ti on the Fe-based coating by laser cladding[J]. Surface & Coatings Technology, 2016, 291, 423- 429.
CHEN X Y , SHI E X , TODD S , et al. Study on mechanism of laser metal deposition based on ultrasonic vibration[J]. China Mechanical Engineering, 2015, 26 (2): 200- 203.
doi: 10.3969/j.issn.1004-132X.2015.02.013
16
SURESH N , CHARRASIC P . Microstructure and mechanical properties of castings under vibration techniques-a review[J]. Applied Mechanics and Materials, 2014, 550, 71- 80.
doi: 10.4028/www.scientific.net/AMM.550
17
METHONG T , POOPAT B . The effect of ultrasonic vibration on properties of weld metal[J]. Key Engineering Materials, 2013, 545, 177- 181.
doi: 10.4028/www.scientific.net/KEM.545
ZENG D W , XIE C S . A numberical simulation for two dimen-sional and temperature field in the molten pool of laser cladding[J]. Acta Metallurgica Sinica, 1999, 35 (6): 604- 607.
19
刘振侠.激光熔凝和激光熔覆的数学模型及数值分析[D].西安: 西北工业大学, 2003.
19
LIU Z X. Modeling and numerical simulation on laser remelting and cladding[D]. Xi'an: Northwestern Polytechnical Univer-sity, 2003.
YAN S X , DONG S Y , XU B S , et al. Effect of molten pool convection on pores and elements distribution in the process of laser cladding[J]. Infrared and Laser Engineering, 2014, 43 (9): 2832- 2839.
doi: 10.3969/j.issn.1007-2276.2014.09.009
WANG W , YUE Y M , YANG G , et al. Influence of ultrasonic vibration on melt pool in laser melting proces[J]. Chinese Jour-nal of Lasers, 2015, 42 (11): 93- 100.
LI H , LI C , LI Z X . Progress in power ultrasound effect on mol-ten metal shaping and its visualization[J]. Journal of Materials Engineering, 2017, 45 (5): 118- 126.
LI D Y , ZHAO Z L , ZHANG J , et al. Influence of ultrasonic vibration on temperature field of TiC/FeAl composite coating in laser cladding[J]. Heat Treatment of Metals, 2015, 40 (3): 190- 195.
24
DRIDI W , HENRY D , BEN H H . Influence of acoustic strea-ming on the stability of melt flows in horizontal bridgman config-urations[J]. Journal of Crystal Growth, 2008, 310 (7): 1546- 1551.
LIU H X , TAO X D , ZHANG X W , et al. Microstructure and in-terface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J]. Optics and Precision Engi-neering, 2015, 23 (8): 2192- 2202.
26
WU D J , GUO M H , MA G Y , et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141, 207- 209.
doi: 10.1016/j.matlet.2014.11.058
WANG W , GUO P F , ZHANG J Z , et al. Ultrasonic effect on laser cladding BT20 titanium alloy process[J]. Chinese Journal of Lasers, 2013, 40 (8): 65- 69.
QIE X W , LI J , MA X D , et al. Degassing effect and grain refine-ment of Al-Si alloy under ultrasound field[J]. Acta Metallurgica Sinica, 2008, 44 (4): 414- 418.
doi: 10.3321/j.issn:0412-1961.2008.04.006