Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (1): 11-17    DOI: 10.11868/j.issn.1001-4381.2017.001545
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯添加量对铜基复合材料性能的影响
李秀辉, 燕绍九(), 洪起虎, 赵双赞, 陈翔
中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Influence of graphene content on properties of Cu matrix composites
Xiu-hui LI, Shao-jiu YAN(), Qi-hu HONG, Shuang-zan ZHAO, Xiang CHEN
Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(7819 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用一步化学还原法结合放电等离子烧结工艺制备石墨烯增强铜基复合材料,利用XRD、SEM、拉曼光谱、拉伸试验机、纳米压痕仪、涡流电导率仪等研究石墨烯含量对复合材料微观组织、力学性能和导电性能的影响。结果表明:石墨烯在复合材料基体中均匀分布,石墨烯的添加能显著增强铜基体的力学性能。与纯铜相比,添加0.025%(质量分数)的氧化石墨烯,可使其屈服强度提高219.8%,抗拉强度提高35.9%,弹性模量提高6.9%,此外,其导电率仍有93.1% IACS。随着石墨烯含量的增加,复合材料的屈服强度、抗拉强度及弹性模量均有所下降,这是因为高石墨烯含量复合粉体中部分石墨烯纳米片未能被铜颗粒包覆,其与铜基体界面结合强度低,石墨烯的剪切应力转移强化效果降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李秀辉
燕绍九
洪起虎
赵双赞
陈翔
关键词 石墨烯铜基复合材料一步化学还原力学性能界面结合    
Abstract

Graphene reinforced copper composites were fabricated by a one-step chemical reduction and spark plasma sintering. The effect of graphene content on microstructure, mechanical properties and electrical conductivity properties of composites was investigated by XRD, SEM, Raman spectrometer, tensile testing machine, nanoindentation, eddy current conductivity meter, etc. The results show that graphene is uniformly distributed within copper matrix and can evidently improve the mechanical properties of copper matrix. Compared to pure copper, the yield strength, tensile strength and elastic modulus of composites is enhanced by 219.8%, 35.9% and 6.9% separately with addition of only 0.025% (mass fraction) graphene oxide. Besides, the electrical conductivity of composites remains 93.1%IACS. With the increase of graphene content, the yield strength, tensile strength and elastic modulus of composites decrease. The main reason is that graphene is not well wrapped by copper particles with the increase of graphene content and the bonding between the naked graphene and copper matrix is poor, which weakens the strengthening effect of load transfer.

Key wordsgraphene    copper matrix composites    one-step chemical reduction    mechanical property    interface bonding
收稿日期: 2017-12-17      出版日期: 2019-01-16
中图分类号:  TB331  
  TG146.1+1  
通讯作者: 燕绍九     E-mail: shaojiuyan@126.com
作者简介: 燕绍九(1980-), 男, 博士, 高级工程师, 主要从事磁性材料及石墨烯应用研究工作, 联系地址:北京市 81 信箱 72 分箱(100095), E-mail:shaojiuyan@126.com
引用本文:   
李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
Xiu-hui LI, Shao-jiu YAN, Qi-hu HONG, Shuang-zan ZHAO, Xiang CHEN. Influence of graphene content on properties of Cu matrix composites. Journal of Materials Engineering, 2019, 47(1): 11-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001545      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/11
Fig.1  纯铜及不同GO添加量复合粉体SEM照片
(a)纯铜;(b)0.025%GO;(c)0.05%GO;(d)0.1%GO;(e)0.2%GO;(f)0.4%GO
Fig.2  粉体、复合材料块体X射线衍射图(a)以及GO原料、复合粉体、块体Raman光谱图(b)
Fig.3  复合材料TEM照片
(a)Cu-0.025%GO;(b)图(a)中A区局部放大图;(c)图(a)中B区局部放大图;(d), (e)Cu-0.2%GO;(f)图(e)中C区高分辨TEM图
Fig.4  纯铜及不同GO添加量复合材料拉伸断口形貌
(a)纯铜;(b)0.025%GO;(c)0.05%GO;(d)0.1%GO;(e)0.2%GO;(f)0.4%GO
Fig.5  纯铜及复合材料力学性能与导电性能
(a)拉伸应力-应变曲线;(b)屈服强度、抗拉强度及伸长率;(c)弹性模量及硬度;(d)导电率
1 韩昌松, 郭铁明, 南雪丽, 等. 铜基复合材料的研究新进展[J]. 材料导报, 2012, 26 (10): 90- 94.
1 HAN C S , GUO T M , NAN X L , et al. New research progress in Cu-based composites[J]. Materials Review, 2012, 26 (10): 90- 94.
2 丁飞, 凤仪, 钱刚, 等. 原位合成法制备Cu-Al2O3复合材料及其性能研究[J]. 材料导报, 2014, 28 (4): 69- 73.
2 DING F , FENG Y , QIAN G , et al. Study on in-situ synthesis of Cu-Al2O3 composites and their performance[J]. Materials Review, 2014, 28 (4): 69- 73.
3 刘骞.非连续石墨/铜复合材料的制备与热性能研究[D].北京: 北京科技大学, 2014.
3 LIU Q.Research of preparation and thermal properties of discontinuous graphite/copper composites[D].Beijing: University of Science and Technology Beijing, 2014.
4 GEIM A K . Graphene:status and prospects[J]. Science, 2009, 324 (5934): 1530- 1534.
doi: 10.1126/science.1158877
5 LEE C G , WEI X D , KYSAR J W , et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385- 388.
doi: 10.1126/science.1157996
6 LIU Y L , XIE B , ZHANG Z , et al. Mechanical properties of graphene papers[J]. Journal of the Mechanics and Physics of Solids, 2012, 60 (4): 591- 605.
doi: 10.1016/j.jmps.2012.01.002
7 PARK S , SHEHZAD M A , KHAN M F , et al. Effect of grain boundaries on electrical properties of polycrystalline graphene[J]. Carbon, 2017, 112, 142- 148.
doi: 10.1016/j.carbon.2016.11.010
8 燕绍九, 陈翔, 洪起虎, 等. 石墨烯增强铝基纳米复合材料研究进展[J]. 航空材料学报, 2016, 36 (3): 57- 70.
8 YAN S J , CHEN X , HONG Q H , et al. Graphene reinfored aluminum matrix nanocomposites[J]. Journal of Aeronautical Materials, 2016, 36 (3): 57- 70.
9 WANG X L , LI J J , WANG Y P . Improved high temperature strength of copper-graphene composite material[J]. Materials Letters, 2016, 181, 309- 312.
doi: 10.1016/j.matlet.2016.06.034
10 DUTKIEWICZ J , OZGA P , MAZIARZ W , et al. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets[J]. Materials Science and Engineering:A, 2015, 628, 124- 134.
doi: 10.1016/j.msea.2015.01.018
11 LI W P , LI D L , FU Q , et al. Conductive enhancement of copper/graphene composites based on high-quality graphene[J]. RSC Advances, 2015, 5 (98): 80428- 80433.
doi: 10.1039/C5RA15189A
12 ZHANG D D , ZHAN Z J . Strengthening effect of graphene derivatives in copper matrix composites[J]. Journal of Alloys and Compounds, 2016, 654, 226- 233.
doi: 10.1016/j.jallcom.2015.09.013
13 CHEN F Y , YING J M , WANG Y F , et al. Effects of graphene content on the microstructure and properties of copper matrix composites[J]. Carbon, 2016, 96, 836- 842.
doi: 10.1016/j.carbon.2015.10.023
14 WANG L D , CUI Y , LI B , et al. High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing[J]. RSC Advances, 2015, 5 (63): 51193- 51200.
doi: 10.1039/C5RA04782J
15 ZHAO C , WANG J . Fabrication and tensile properties of graphene/copper composites prepared by electroless plating for structrual applications[J]. Physica Status Solidi, 2015, 211 (12): 2878- 2885.
16 JIANG R R , ZHOU X F , FANG Q L , et al. Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties[J]. Materials Science and Engineering:A, 2016, 654, 124- 130.
doi: 10.1016/j.msea.2015.12.039
17 GAO X , YUE H Y , GUO E J , et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology, 2016, 301, 601- 607.
doi: 10.1016/j.powtec.2016.06.045
18 CHEN Y K , ZHANG X , LIU E Z , et al. Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism[J]. Journal of Alloys and Compounds, 2016, 688, 69- 76.
19 CHEN Y K , ZHANG X , LIU E Z , et al. Fabrication of in-situ grown graphene reinforced Cu matrix composites[J]. Scientific Reports, 2016, 6, 19363.
doi: 10.1038/srep19363
20 KIM W J , LEE T J , HAN S H . Multi-layer graphene/copper composites:preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon, 2014, 69, 55- 65.
doi: 10.1016/j.carbon.2013.11.058
21 LIU X R , WEI D J , ZHUANG L M , et al. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding[J]. Materials Science and Engineering:A, 2015, 642, 1- 6.
doi: 10.1016/j.msea.2015.06.032
22 PASRICHA R , GUPTA S , SRIVASTAVA A K . A facile and novel synthesis of Ag-graphene-based nanocomposites[J]. Small, 2009, 5 (20): 2253- 2259.
doi: 10.1002/smll.v5:20
23 XU C , WANG X , ZHU J W . Graphene-metal particle nanocomposite[J]. The Journal of Physical Chemistry C, 2008, 112 (50): 19841- 19845.
doi: 10.1021/jp807989b
24 WEI J N , LI Z B , HAN F S . Thermal mismatch dislocations in macroscopic graphite particle-reinforced metal matrix composites studied by internal friction[J]. Physica Status Solidi, 2015, 191 (1): 125- 136.
25 洪起虎, 燕绍九, 杨程, 等. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44 (9): 1- 7.
25 HONG Q H , YAN S J , YANG C , et al. Microstructure and mechanical properties of graphene oxide/copper composites[J]. Journal of Materials Engineering, 2016, 44 (9): 1- 7.
26 杨旭东, 陈亚军, 师春生, 等. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45 (9): 93- 100.
26 YANG X D , CHEN Y J , SHI C S , et al. Effect of ball-milling process on the microstructure and mechanical properties of in-situ synthesized carbon nanotube reinforced aluminum composites[J]. Journal of Materials Engineering, 2017, 45 (9): 93- 100.
27 YAN S J , DAI S L , ZHANG X Y , et al. Investigating aluminum alloy reinforced by graphene nanoflakes[J]. Materials Science and Engineering:A, 2014, 612, 440- 444.
doi: 10.1016/j.msea.2014.06.077
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[3] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[6] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[7] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[8] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[9] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[10] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[11] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[12] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[13] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[14] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[15] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn