Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 11-17    DOI: 10.11868/j.issn.1001-4381.2017.001545
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯添加量对铜基复合材料性能的影响
李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔
中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Influence of graphene content on properties of Cu matrix composites
LI Xiu-hui, YAN Shao-jiu, HONG Qi-hu, ZHAO Shuang-zan, CHEN Xiang
Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(7819 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用一步化学还原法结合放电等离子烧结工艺制备石墨烯增强铜基复合材料,利用XRD、SEM、拉曼光谱、拉伸试验机、纳米压痕仪、涡流电导率仪等研究石墨烯含量对复合材料微观组织、力学性能和导电性能的影响。结果表明:石墨烯在复合材料基体中均匀分布,石墨烯的添加能显著增强铜基体的力学性能。与纯铜相比,添加0.025%(质量分数)的氧化石墨烯,可使其屈服强度提高219.8%,抗拉强度提高35.9%,弹性模量提高6.9%,此外,其导电率仍有93.1% IACS。随着石墨烯含量的增加,复合材料的屈服强度、抗拉强度及弹性模量均有所下降,这是因为高石墨烯含量复合粉体中部分石墨烯纳米片未能被铜颗粒包覆,其与铜基体界面结合强度低,石墨烯的剪切应力转移强化效果降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李秀辉
燕绍九
洪起虎
赵双赞
陈翔
关键词 石墨烯铜基复合材料一步化学还原力学性能界面结合    
Abstract:Graphene reinforced copper composites were fabricated by a one-step chemical reduction and spark plasma sintering. The effect of graphene content on microstructure, mechanical properties and electrical conductivity properties of composites was investigated by XRD,SEM,Raman spectrometer, tensile testing machine, nanoindentation, eddy current conductivity meter, etc. The results show that graphene is uniformly distributed within copper matrix and can evidently improve the mechanical properties of copper matrix. Compared to pure copper, the yield strength, tensile strength and elastic modulus of composites is enhanced by 219.8%, 35.9% and 6.9% separately with addition of only 0.025% (mass fraction) graphene oxide. Besides, the electrical conductivity of composites remains 93.1%IACS. With the increase of graphene content, the yield strength, tensile strength and elastic modulus of composites decrease. The main reason is that graphene is not well wrapped by copper particles with the increase of graphene content and the bonding between the naked graphene and copper matrix is poor, which weakens the strengthening effect of load transfer.
Key wordsgraphene    copper matrix composites    one-step chemical reduction    mechanical property    interface bonding
收稿日期: 2017-12-17      出版日期: 2019-01-16
中图分类号:  TB331  
  TG146.1+1  
通讯作者: 燕绍九(1980-),男,博士,高级工程师,主要从事磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
LI Xiu-hui, YAN Shao-jiu, HONG Qi-hu, ZHAO Shuang-zan, CHEN Xiang. Influence of graphene content on properties of Cu matrix composites. Journal of Materials Engineering, 2019, 47(1): 11-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001545      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/11
[1] 韩昌松,郭铁明,南雪丽,等.铜基复合材料的研究新进展[J].材料导报,2012,26(10):90-94. HAN C S,GUO T M,NAN X L,et al.New research progress in Cu-based composites[J].Materials Review,2012,26(10):90-94.
[2] 丁飞,凤仪,钱刚,等.原位合成法制备Cu-Al2O3复合材料及其性能研究[J].材料导报,2014,28(4):69-73. DING F,FENG Y,QIAN G,et al.Study on in-situ synthesis of Cu-Al2O3 composites and their performance[J].Materials Review,2014,28(4):69-73.
[3] 刘骞.非连续石墨/铜复合材料的制备与热性能研究[D].北京:北京科技大学,2014. LIU Q.Research of preparation and thermal properties of discontinuous graphite/copper composites[D].Beijing:University of Science and Technology Beijing,2014.
[4] GEIM A K.Graphene:status and prospects[J].Science,2009,324(5934):1530-1534.
[5] LEE C G,WEI X D,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
[6] LIU Y L,XIE B,ZHANG Z,et al.Mechanical properties of graphene papers[J].Journal of the Mechanics and Physics of Solids,2012,60(4):591-605.
[7] PARK S,SHEHZAD M A,KHAN M F,et al.Effect of grain boundaries on electrical properties of polycrystalline graphene[J].Carbon,2017,112:142-148.
[8] 燕绍九,陈翔,洪起虎,等.石墨烯增强铝基纳米复合材料研究进展[J].航空材料学报,2016,36(3):57-70. YAN S J,CHEN X,HONG Q H,et al.Graphene reinfored aluminum matrix nanocomposites[J].Journal of Aeronautical Materials,2016,36(3):57-70.
[9] WANG X L,LI J J,WANG Y P.Improved high temperature strength of copper-graphene composite material[J].Materials Letters,2016,181:309-312.
[10] DUTKIEWICZ J,OZGA P,MAZIARZ W,et al.Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets[J].Materials Science and Engineering:A,2015,628:124-134.
[11] LI W P,LI D L,FU Q,et al.Conductive enhancement of copper/graphene composites based on high-quality graphene[J].RSC Advances,2015,5(98):80428-80433.
[12] ZHANG D D,ZHAN Z J.Strengthening effect of graphene derivatives in copper matrix composites[J].Journal of Alloys and Compounds,2016,654:226-233.
[13] CHEN F Y,YING J M,WANG Y F,et al.Effects of graphene content on the microstructure and properties of copper matrix composites[J].Carbon,2016,96:836-842.
[14] WANG L D,CUI Y,LI B,et al.High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing[J].RSC Advances,2015,5(63):51193-51200.
[15] ZHAO C,WANG J.Fabrication and tensile properties of graphene/copper composites prepared by electroless plating for structrual applications[J].Physica Status Solidi,2015,211(12):2878-2885.
[16] JIANG R R,ZHOU X F,FANG Q L,et al.Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties[J].Materials Science and Engineering:A,2016,654:124-130.
[17] GAO X,YUE H Y,GUO E J,et al.Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J].Powder Technology,2016,301:601-607.
[18] CHEN Y K,ZHANG X,LIU E Z,et al.Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism[J].Journal of Alloys and Compounds,2016,688:69-76.
[19] CHEN Y K,ZHANG X,LIU E Z,et al.Fabrication of in-situ grown graphene reinforced Cu matrix composites[J].Scientific Reports,2016,6:19363.
[20] KIM W J,LEE T J,HAN S H.Multi-layer graphene/copper composites:preparation using high-ratio differential speed rolling,microstructure and mechanical properties[J].Carbon,2014,69:55-65.
[21] LIU X R,WEI D J,ZHUANG L M,et al.Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding[J].Materials Science and Engineering:A,2015,642:1-6.
[22] PASRICHA R,GUPTA S,SRIVASTAVA A K.A facile and novel synthesis of Ag-graphene-based nanocomposites[J].Small,2009,5(20):2253-2259.
[23] XU C,WANG X,ZHU J W.Graphene-metal particle nanocomposite[J].The Journal of Physical Chemistry C,2008,112(50):19841-19845.
[24] WEI J N,LI Z B,HAN F S.Thermal mismatch dislocations in macroscopic graphite particle-reinforced metal matrix composites studied by internal friction[J].Physica Status Solidi,2015,191(1):125-136.
[25] 洪起虎,燕绍九,杨程,等.氧化石墨烯/铜基复合材料的微观结构及力学性能[J].材料工程,2016,44(9):1-7. HONG Q H,YAN S J,YANG C,et al.Microstructure and mechanical properties of graphene oxide/copper composites[J].Journal of Materials Engineering,2016,44(9):1-7.
[26] 杨旭东,陈亚军,师春生,等.球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J].材料工程,2017,45(9):93-100. YANG X D,CHEN Y J,SHI C S,et al.Effect of ball-milling process on the microstructure and mechanical properties of in-situ synthesized carbon nanotube reinforced aluminum composites[J].Journal of Materials Engineering,2017,45(9):93-100.
[27] YAN S J,DAI S L,ZHANG X Y,et al.Investigating aluminum alloy reinforced by graphene nanoflakes[J].Materials Science and Engineering:A,2014,612:440-444.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[4] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[5] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[6] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[7] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[8] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[9] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[10] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[11] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[12] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[13] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[14] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[15] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn