Abstract:In order to improve the wear resistance of 1Cr18Ni9Ti stainless steel in NaCl and acid solution environment, the WC-10Co-4Cr coatings with two grain sizes were prepared by plasma spraying, and the corrosion resistance in 3.5%(mass fraction, the same below)NaCl and acid solution(pH=5.0) were investigated. The results show that the WC, W2C, W and η (CoxWxC) exist in these coatings. The corrosion potential of these coatings is higher than that of 1Cr18Ni9Ti substrate in 3.5% NaCl solution. In the acid solution (pH=5.0) at different temperatures, the potential difference for the nanometer WC-10Co-4Cr coatings has little change with the temperature. The corrosion mechanism of the coatings in NaCl and acid solution is shown as follows:the oxygen atoms adsorbed on the surface of WC-10Co-4Cr coating, can impel the Co and WC to form the galvanic couple in 3.5% NaCl solution. In the acid solution (pH=5.0), Co phase in the WC-10Co-4Cr coatings is dissolved to Co2+, and formed the galvanic corrosion with WC phase, so the isolated WC particles are formed on the coating surface.
[1] 张瑞珠,赵元元,严大考. 1Cr18Ni9Ti不锈钢表面电火花熔覆WC涂层特性研究[J]. 表面技术,2015, 44(4):84-88. ZHANG R Z, ZHAO Y Y, YAN D K. Characterization of ele-ctro-spark cladding WC coating on surface of 1Cr18Ni9Ti stainless steel[J]. Surface Technology, 2015, 44(4):84-88.
[2] PUCHI-CABRERA E S, STAIA M H, SANTANA Y Y, et al. Fatigue behavior of AA7075-T6 aluminum alloy coated with a WC-10Co-4Cr cermet by HVOF thermal spray[J]. Surface and Coatings Technology, 2013, 220(15):122-130.
[3] GOYAL D K, SINGH H, KUMAR H, et al. Slurry erosion behavior of HVOF sprayed WC-10Co-4Cr and Al2O3+13TiO2 coatings on a turbine steel[J]. Wear, 2012, 289(15):46-57.
[4] 周克裕,邓春明,刘敏,等. 300M钢基体上高速火焰喷涂WC-17Co和WC-10Co-4Cr修复层的疲劳和抗盐雾腐蚀性能[J]. 稀有金属材料与工程, 2009, 38(4):671-676. ZHOU K S, DENG C M, LIU M, et al. Characterizations of fatigue and salt spray corrosion resistance of HVAF sprayed WC-17Co and WC-10Co-4Cr coatings on the substrate of 300M steel[J]. Rare Metal Materials and Engineering, 2009(4):671-676.
[5] SOUZA V A D, NEVILLE A. Corrosion and synergy in a WC-Co-Cr HVOF thermal spray coating-understanding their role in erosion-corrosion degradation[J]. Wear, 2005, 259(1):171-180.
[6] 杨伟华,吴玉萍,洪晟,等. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程,2018, 46(5):120-125. YANG W H, WU Y P, HONG S, et al. Microstructure,friction and wear properties of HVOF sprayed WC-10Co-4Cr coating[J]. Journal of Materials Engineering,2018,46(5):120-125.
[7] 刁望勋,王志雄,高俊国,等. 不同工艺粉末对超音速火焰喷涂WC-10Co-4Cr涂层性能的影响[J]. 航空材料学报,2013, 33(3):38-45. DIAO W X, WANG Z X, GAO J G, et al. Influence of different powder on properties of WC10Co4Cr coatings prepared by HVOF[J]. Journal of Aeronautical Materials, 2013, 33(3):38-45.
[8] 陈杰,宋惠,戴宇,等. 镁合金表面冷喷涂420不锈钢/WC-17Co涂层及其耐磨耐蚀性能[J]. 航空材料学报,2018, 38(4):82-86. CHEN J, SONG H, DAI Y, et al. Wear and corrosion properties of cold sprayed 420 stainless Steel/WC-17Co coating on magn-esium alloy[J]. Journal of Aeronautical Materials, 2013, 38(4):82-86.
[9] 赵立英,刘平安. 氧燃比对爆炸喷涂碳化钨涂层结构和性能的影响[J]. 材料工程,2016, 44(6):50-55. ZHAO L Y, LIU P A. Effects of oxygen-fuel ratio on structure and property of detonation gun sprayed WC coating[J]. Journal of Materials Engineering, 2016, 44(6):50-55.
[10] 王海军,蔡江,韩志海. 超音速等离子与HVOF喷涂WC-Co涂层的冲蚀磨损性能研究[J]. 材料工程, 2005(4):50-54. WANG H J, CAI J, HAN Z H. Study on erosion wear of WC-Co coatings prepared by supersonic plasma spray and HVOF spray[J]. Journal of Materials Engineering, 2005(4):50-54.
[11] 杜三明,靳俊杰,胡传恒,等. 特征等离子喷涂参数对WC涂层结构和性能的影响[J]. 摩擦学学报, 2015, 35(4):362-367. DU S M, JIN J J, HU C H, et al. Influence of critical parame-ter on microstructure and properties of WC coatings by plasma spraying[J]. Tribology, 2015, 35(4):362-367.
[12] 刘安强,袁建鹏,祝弘滨,等. 超音速火焰喷涂WC-10Co4Cr涂层在含Cl-环境中的腐蚀行为[J]. 热喷涂技术,2016, 8(2):16-21. LIU A Q, YUAN J P, ZHU H B, et al. Corrosion behavior of HVOF sprayed WC-10Co4Cr coating in containing Cl- environ-ment[J]. Thermal Spray Technology, 2016, 8(2):16-21.
[13] WANG L J, QIU P X, LIU Y, et al. Corrosion behavior of thermal sprayed WC cermet coatings containing metallic binders in saline environment[J]. Transactions of Nonferrous Metal So-ciety China, 2013, 23:2611-2617
[14] 倪继良,程涛涛,丁坤英,等. WC粒度对WC-10Co-4Cr涂层磨粒磨损性能的影响[J]. 材料保护,2013,46(1):19-21. NI J L, CHENG T T, DING K Y, et al. Effect of grain size of tungsten carbide particulates on abrasive wear behavior of WC-10Co-4Cr coatings[J]. Materials Protection, 2013, 46(1):19-21.
[15] 龙坚战,杜勇,陆必志,等. Co-Ni-Al复合黏结相硬质合金研究进展[J],航空材料学报,2018,38(5):47-58. LONG J Z, DU Y, LU B Z, et al. Research progress in cem-ented carbide with Co-Ni-Al composite binder phase[J]. Journal of Aeronautical Materials, 2018, 38(5):47-58.
[16] MATEEN A, SAHA G C, KHAN T I. Tribological behavior of HVOF sprayed near-nanostructured and microstructured WC-17wt.%Co coatings[J]. Surface & Coatings Technology, 2011(206):1077-1084.
[17] PERRY J M, NEVILLE A, WILSON V, et al. Assessment of the corrosion rates and mechanisms of a WC-Co-Cr HVOF coa-ting in static and liquid-solid impingement saline environments[J]. Surface & Coatings Technology, 2001, 137:43-49.
[18] LEKATOU A. Corrosion properties of HVOF cermet coatings with bond coats in an aqueous chloride environment[J]. Thin Solid Films,2008, (5):112-115.
[19] 吴迎飞,陈华辉,李海存,等. 铁基复合材料中碳化钨颗粒的溶解析出行为[J]. 材料工程,2018,46(8):98-105. WU Y F, CHEN H H, LI H C, et al. Dissolution and precipitation behavior of WC particles in iron matrix composites[J]. Journal of Materials Engineering, 2018, 46(8):98-105.
[20] 李健,夏建飞. 等离子喷涂WC/Co涂层耐中性盐雾腐蚀性能[J]. 腐蚀科学与防护技术, 2014, 26(1):35-40. LI J, XIA J F. Salt spray corrosion resistance of WC/Co coating prepared by plasma spraying[J]. Corrosion Science and Protec-tion Technology, 2014, 26(1):35-40.