Please wait a minute...
材料工程  2019, Vol. 47 Issue (3): 30-41    DOI: 10.11868/j.issn.1001-4381.2017.001563
  综述 本期目录 | 过刊浏览 | 高级检索 |
胡安俊, 龙剑平, 舒朝著
成都理工大学 材料与化学化工学院, 成都 610059
Research progress on designing stable and reversible cathodes catalysts for lithium-air batteries
HU An-jun, LONG Jian-ping, SHU Chao-zhu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(3498 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 锂-空气电池具有极高的理论能量密度,成为下一代最有希望的电化学能量储存技术之一。锂-空气电池的性能主要取决于空气阴极表面发生的电化学反应,因此,合理设计具有高稳定性和可逆性的阴极是实现商业化可行的锂-空气电池的关键所在。然而,传统碳基电极的不稳定性导致的副反应会限制电池容量及其循环性能,因此,需要寻找能够替代碳基电极的新型电极。本文首先结合锂-空气电池的结构和阴极反应原理,提出了目前锂-空气电池面临的挑战,然后基于碳基阴极的不稳定性分析总结了设计稳定和可逆的锂-空气电池阴极的方法,最后提出了阴极催化剂的合理设计和催化机理的深入理解对锂-空气电池阴极的性能改善起着决定性作用的观点。
E-mail Alert
关键词 锂-空气电池阴极催化剂化学稳定性可逆性碳的表面改性无碳阴极    
Abstract:Lithium-air batteries(LABs) are among the most promising electrochemical energy storage technologies in the future due to extremely high theoretical energy density. The performance of LABs is mainly governed by the electrochemical reactions that occur on the surface of the cathode. Therefore, the rational design of a cathode with high stability and reversibility is the key to commercially viable LABs. However, the side reactions are caused by the instability of traditional carbon-based electrodes can limit capacity and cycle performance of LABs, therefore, alternative carbon-based electrode materials are required. Based on the structure and the principle of cathode reaction of LABs, the current challenges of LABs were presented. Then based on the analysis of the instability of carbon-based cathode, the design of a stable and reversible cathode for LABs was summarized. Finally, a perspective that the rational design of the cathode catalyst and the in-depth understanding of the catalytic mechanism play a decisive role in the performance improvement of LABS was provided.
Key wordslithium-air battery    cathode catalyst    chemical stability    reversibility    surface modification of carbon    carbon-free cathode
收稿日期: 2017-12-18      出版日期: 2019-03-12
中图分类号:  TM911.41  
通讯作者: 龙剑平(1973-),男,教授,博士,研究方向为复合材料、新能源材料等,联系地址:四川省成都市成华区二仙桥东三路1号成都理工大学(610059),     E-mail:
胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
HU An-jun, LONG Jian-ping, SHU Chao-zhu. Research progress on designing stable and reversible cathodes catalysts for lithium-air batteries. Journal of Materials Engineering, 2019, 47(3): 30-41.
链接本文:      或
[1] CHU S, MAJUMDR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.
[2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1):19-29.
[3] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1):16-22.
[4] DIETERICH J M, CARTER E A. Quantum solutions for a sustainable energy future[J]. Nature Reviews Chemistry, 2017, 1(4):0032.
[5] STERN P C, JANDA K B, BROWN M A, et al. Opportunities and insights for reducing fossil fuel consumption by households and organizations[J]. Nature Energy, 2016, 1:16043.
[6] 陈牧,颜悦,刘伟明,等. 全固态薄膜锂电池研究进展和产业化展望[J]. 航空材料学报, 2014, 34(6):1-20. CHEN M, YAN Y, LIU W M, et al. Research advances and industrialization prospects of all-solid-state thin-film lithium battery[J]. Journal of Aeronautical Materials, 2014, 34(6):1-20.
[7] GREY C P, TARASCON J M. Sustainability and in situ monitoring in battery development[J]. Nature Materials, 2017, 16(1):45-56.
[8] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
[9] VAN N R. The rechargeable revolution:a better battery.[J]. Nature, 2014, 507(7490):26-8.
[10] 马昊,刘磊,苏杰,等. 锂离子电池Sn基负极材料研究进展[J]. 材料工程, 2017, 45(6):138-146. MA H, LIU L, SU J, et al. Research progress on tin-based anode materials for lithium ion batteries[J]. Journal of Materials Engineering, 2017, 45(6):138-146.
[11] LIM H D, LEE B, BAE Y, et al. Reaction chemistry in rechargeable Li-O2 batteries[J]. Chemical Society Reviews, 2017, 46(10):2873.
[12] LUO L, LIU B, SONG S, et al. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy[J]. Nature Nanotechnology, 2017, 12(6):535.
[13] ZHU Y G, LIU Q, RONG Y, et al. Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries[J]. Nature Communications, 2017, 8:14308.
[14] LIU Y, WANG L, CAO L, et al. Understanding and suppressing side reactions in Li-air batteries[J]. Materials Chemistry Frontiers, 2017, 1(12):2495-2510.
[15] TAN P, LIU M, SHAO Z, et al. Recent advances in perovskite oxides as electrode materials for nonaqueous lithium-oxygen batteries[J]. Advanced Energy Materials, 2017, 7(13):1602674.
[16] LU Y C, GALLANT B M, KWABI D G, et al. Lithium-oxygen batteries:bridging mechanistic understanding and battery performance[J]. Energy & Environmental Science, 2013, 6(3):750-768.
[17] WANG Z L, XU D, XU J J, et al. Oxygen electrocatalysts in metal-air batteries:from aqueous to nonaqueous electrolytes.[J]. Chemical Society Reviews, 2014, 43(22):7746-7786.
[18] EFTEKHARI A, BALAJI RAMANUJAM. In pursuit of catalytic cathodes for lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2017, 5(17):7710-7731.
[19] CHANG Z, XU J, ZHANG X. Recent progress in electrocatalyst for Li-O2 batteries[J]. Advanced Energy Materials, 2017,7(23):1700875.
[20] JUNG K N, KIM J, YAMAUCHI Y, et al. Rechargeable lithium-air batteries:a perspective on the development of oxygen electrodes[J]. Journal of Materials Chemistry A, 2016, 4(37):14050-14068.
[21] MA Z, YUAN X, LI L, et al. A review of cathode materials and structures for rechargeable lithium-air batteries[J]. Energy & Environmental Science, 2015, 8(8):2144-2198.
[22] CHENG F, CHEN J. Metal-air batteries:from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6):2172-2192.
[23] LI L, CHANG Z W, ZHANG X B. Recent progress on the development of metal-air batteries[J]. Advanced Sustainable Systems, 2017,1(10):1700036.
[24] TAN P, JIANG H R, ZHU X B, et al. Advances and challenges in lithium-air batteries[J]. Applied Energy, 2017, 204:780-806.
[25] GRANDE L, PAILLARD E, HASSOUN J, et al. The lithium/air battery:still an emerging system or a practical reality?[J]. Advanced Materials, 2015, 27(5):784-800.
[26] LUNTZ A C, MCCLOSKEY B D. Nonaqueous Li-air batteries:a status report[J]. Chemical Reviews, 2014, 114(23):11721-11750.
[27] LU Y C, GALLANT B M, KWABI D G, et al. Lithium-oxygen batteries:bridging mechanistic understanding and battery performance[J]. Energy & Environmental Science, 2013, 6(3):750-768.
[28] LYU Z, ZHOU Y, DAI W, et al. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries.[J]. Chemical Society Reviews, 2017, 46(19):6073.
[29] QIAO Y, WU S, YI J, et al. From O2- to HO2-:reducing by-products and overpotential in Li-O2 batteries by water addition[J]. Angewandte Chemie International Edition, 2017, 56(18):4960-4964.
[30] LIU T, LESKES M, YU W, et al. Cycling Li-O2 batteries via LiOH formation and decomposition[J]. Science, 2015, 350(6260):530.
[31] LUO Z K, LIANG C S, WANG F, et al. Optimizing main mMaterials for a lithium-air battery of high cycle life[J]. Advanced Functional Materials, 2014, 24(14):2101-2105.
[32] AURBACH D, MCCLOSKEY B D, NAZAR L F, et al. Advances in understanding mechanisms underpinning lithium-air batteries[J]. Nature Energy, 2016, 1(9):16128.
[33] PENG Z, FREUNBERGER S A, HARDWICK L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angewandte Chemie, 2011, 123(28):6475-6479.
[34] JOHNSON L, LI C, LIU Z, et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries[J]. Nature Chemistry, 2014, 6(12):1091.
[35] GANAPATHY S, ADAMS B D, STENOU G, et al. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction.[J]. Journal of the American Chemical Society, 2014, 136(46):16335.
[36] ONG S P, MO Y, CEDER G. Low hole polaron migration barrier in lithium peroxide[J]. Physical Review B, 2012, 85(8):081105.
[37] KANG J, JUNG Y S, WEI S H, et al. Implications of the formation of small polarons in Li2O2 for Li-air batteries[J]. Physical Review B Condensed Matter, 2012, 85(3):317-322.
[38] GERBIG O, MERKLE R, Maier J. Electron and ion transport in Li2O2[J]. Advanced Materials, 2013, 25(22):3129-3133.
[39] LI Y, WANG J, Li X, et al. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries[J]. Electrochemistry Communications, 2011, 13(7):668-672.
[40] ZHANG T, ZHOU H. From Li-O2 to Li-air batteries:carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen[J]. Angewandte Chemie, 2012, 124(44):11224-11229.
[41] KITAURA H, ZHOU H. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode[J]. Advanced Energy Materials, 2012, 2(7):889-894.
[42] WANG Z L, XU D, XU J J, et al. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials, 2012, 22(17):3699-3705.
[43] ZHAO C, YU C, LIU S, et al. 3D Porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries[J]. Advanced Functional Materials, 2015, 25(44):6913-6920.
[44] GUO Z, ZHOU D, DONG X L, et al. Ordered hierarchical mesoporous/macroporous carbon:a high-performance catalyst for rechargeable Li-O2 batteries[J]. Advanced Materials, 2013, 25(39):5668-5672.
[45] ZHOU W, ZHANG H, NIE H, et al. Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3389-3397.
[46] SAKAUSHI K, FELLINGER T P, ANTONIETTI M. Bifunctional metal-free catalysis of mesoporous noble carbons for oxygen reduction and evolution reactions[J]. Chem Sus Chem, 2015, 8(7):1156-1160.
[47] WANG L, LYU Z, GONG L, et al. Ruthenium-functionalized hierarchical carbon nanocages as efficient catalysts for Li-O2 batteries[J]. ChemNanoMat, 2017, 3(6), 415-419.
[48] McCLOSKEY B D, SPEIDEL A, SCHEFFLER R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(8):997-1001.
[49] OTTAKAM THOTIYL M M, FREUNBERGER S A, PENG Z, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2012, 135(1):494-500.
[50] GONG K, DU F, XIA Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915):760-764.
[51] GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361.
[52] YANG L, JIANG S, ZHAO Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie, 2011, 50(31):7132.
[53] WU Q, YANG L, WANG X, et al. From carbon-based nanotubes to nanocages for advanced energy conversion and storage[J]. Accounts of Chemical Research, 2017, 50(2):435.
[54] JIANG Y, YANG L, SUN T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis, 2015, 5(11):6707-6712.
[55] ZHAO Y, YANG L, CHEN S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Journal of the American Chemical Society, 2013, 135(4):1201-1204.
[56] SHUI J, DU F, XUE C, et al. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries[J]. Acs Nano, 2014, 8(3):3015.
[57] WONG R A, DUTTA A, YANG C, et al. Structurally tuning Li2O2 by controlling the surface properties of carbon electrodes:implications for Li-O2 batteries[J]. Chemistry of Materials, 2016, 28(21):8006-8015.
[58] LU J, LEI Y, LAU K C, et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries.[J]. Nature Communications, 2013, 4(4):2383.
[59] JIAN Z, LIU P, Li F, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries[J]. Angewandte Chemie International Edition, 2014, 53(2):442-446.
[60] WU F, XING Y, ZENG X, et al. Platinum-coated hollow graphene nanocages as cathode used in lithium-oxygen batteries[J]. Advanced Functional Materials, 2016, 26(42):7626-7633.
[61] ZHOU Y, LYU Z, WANG L, et al. Co3O4 functionalized porous carbon nanotube oxygen-cathode to promote Li2O2 surface growth for improved cycling stability in Li-O2 batteries[J]. Journal of Materials Chemistry A, 2017, 5, 25501-25508
[62] XIE J, YAO X, CHENG Q, et al. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode[J]. Angewandte Chemie, 2015, 54(14):4299-4303.
[63] LIU W M, GAO T T, YANG Y, et al. A hierarchical three-dimensional NiCo2O4 nanowire array/carbon cloth as an air electrode for nonaqueous Li-air batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(38):15806-15810.
[64] RYU W H, YOON T H, SONG S H, et al. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries[J]. Nano Letters, 2013, 13(9):4190-4197.
[65] LIU S, ZHU Y, XIE J, et al. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries[J]. Advanced Energy Materials, 2014, 4(9):1301960.
[66] DONG S, WANG S, GUAN J, et al. Insight into enhanced cycling performance of Li-O2 batteries based on binary CoSe2/CoO nanocomposite electrodes[J]. The Journal of Physical Chemistry Letters, 2014, 5(3):615-621.
[67] LEE C K, PARK Y J. Polyimide-wrapped carbon nanotube electrodes for long cycle Li-air batteries[J]. Chemical Communications, 2014, 51(7):1210-1213.
[68] KWAK W J, LAU K C, SHIN C D, et al. A Mo2C/Carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life[J]. ACS Nano, 2015, 9(4):4129.
[69] LIU Q C, XU J J, XU D, et al. Flexible lithium-oxygen battery based on a recoverable cathode[J]. Nature Communications, 2015, 6:7892.
[70] SU D, DOU S, WANG G. Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries[J]. NPG Asia Materials, 2015, 7(1):e155.
[71] PENG Z, BRUCE P G. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094):563.
[72] LIAO K, ZHANG T, WANG Y, et al. Nanoporous Ru as a carbon-and binder-free cathode for Li-O2 batteries[J]. Chemsuschem, 2015, 8(8):1429-1434.
[73] CHEN L Y, GUO X W, HAN J H, et al. Nanoporous metal/oxide hybrid materials for rechargeable lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2015, 3(7):3620-3626.
[74] KIM B G, JO C, SHIN J, et al. Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic lithium-oxygen batteries[J]. ACS Nano, 2017, 11(2):1736-1746.
[75] NAZAR L F, KUNDU D, BLACK R, et al. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries[J]. Energy & Environmental Science, 2014, 8(4):1292-1298.
[76] CAO X, SUN Z, ZHENG X, et al. MnCo2O4 decorated Magnéli phase titanium oxide as a carbon-free cathode for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2017, 5(37):19991-19996.
[77] ZHAO G, MO R, WANG B, et al. Enhanced cyclability of Li-O2 batteries based on TiO2 supported cathodes with no carbon or binder[J]. Chemistry of Materials, 2014, 26(8):2551-2556.
[78] LU Y C, XU Z, GASTEIGER H A, et al. Platinum-gold nanoparticles:a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35):12170-12171.
[79] ZHANG S, ZHANG X, JIANG G, et al. Tuning nanoparticle structure and surface strain for catalysis optimization[J]. Journal of the American Chemical Society, 2014, 136(21):7734.
[80] LUO W B, GAO X W, CHOU S L, et al. Porous AgPd-Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries[J]. Advanced Materials, 2015, 27(43):6862-6869.
[81] OTTAKAM THOTIYL M M, FREUNBERGER S A, PENG Z, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12(11):1049-1055.
[82] KUNDU D, BLACK R, ADMAS B, et al. Nanostructured metal carbides for aprotic Li-O2 batteries:new insights into interfacial reactions and cathode stability[J]. Journal of Physical Chemistry Letters, 2015, 6(12):2252.
[83] LI F, TANG D M, ZHANG T, et al. Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode[J]. Advanced Energy Materials, 2015, 5(13):1500294.
[84] LI F, TANG D M, CHEN Y, et al. Ru/ITO:a carbon-free cathode for nonaqueous Li-O2 battery.[J]. Nano Letters, 2013, 13(10):4702-4707.
[85] LI F, TANG D M, JIAN Z, et al. Li-O2 battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles[J]. Advanced Materials, 2014, 26(27):4659-4664.
[86] GOWDA S R, BRUNET A, WALLRAFF G M, et al. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries.[J]. Journal of Physical Chemistry Letters, 2013, 4(2):276-279.
[87] LI J, PENG B, ZHOU G, et al. Partially cracked carbon nanotubes as cathode materials for lithium-air batteries[J]. Ecs Electrochemistry Letters, 2013, 2(2):A25-A27.
[88] CHEN W, ZHANG Z, BAO W, et al. Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries[J]. Electrochimica Acta, 2014, 134:293-301.
[89] CUI Y, WEN Z, LIANG X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7):7893-7897.
[90] GUO Z, DONG X, YUAN S, et al. Humidity effect on electrochemical performance of Li-O2, batteries[J]. Journal of Power Sources, 2014, 264(1):1-7.
[91] BLACK R, OH S H, LEE J H, et al. Screening for superoxide reactivity in Li-O2 batteries:effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6):2902-5.
[92] YOUNESI R, HAHLIN M, ROBERTS M, et al. The SEI layer formed on lithium metal in the presence of oxygen:a seldom considered component in the development of the Li-O2, battery[J]. Journal of Power Sources, 2013, 225(2):40-45.
[93] XU W, HU J, ENGELHARD M H, et al. The stability of organic solvents and carbon electrode in nonaqueous Li-O2, batteries[J]. Journal of Power Sources, 2012, 215:240-247.
[94] LIU Z, FENG N, SHEN Z, et al. Carbon-free O2 cathode with three-dimensional ultralight nickel foam supported ruthenium electrocatalysts for Li-O2 batteries[J]. Chemsuschem, 2017, 10(13):2714.
[95] KIM S T, CHOI N, PARK S, et al. Optimization of carbon-and binder-free Au nanoparticle-coated Ni nanowire electrodes for lithium-oxygen batteries[J]. Advanced Energy Materials, 2015, 5(3):1401030.
[96] TAN P, WEI Z H, SHYY W, et al. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air[J]. Energy & Environmental Science, 2016, 9(5):1783-1793.
[97] KANG J, KIM J, LEE S, et al. Breathable carbon-free electrode:black TiO2 with hierarchically ordered porous structure for stable Li-O2 battery[J]. Advanced Energy Materials, 2017, 7(19):1700814.
[98] LUO W B, GAO X W, SHI D Q, et al. Binder-free and carbon-free 3D porous air electrode for Li-O2 batteries with high efficiency, high capacity, and long life[J]. Small, 2016, 12(22):3031-3038.
[99] ZHAO G, XU Z, SUN K. Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2013, 1(41):12862-12867.
[100] HU X, HAN X, HU Y, et al. ε-MnO2 nanostructures directly grown on Ni foam:a cathode catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2014, 6(7):3522-3525.
[101] ZHAO G, MO R, WANG B, et al. Enhanced cyclability of Li-O2 Batteries based on TiO2 supported cathodes with no carbon or binder[J]. Chemistry of Materials, 2014, 26(8):2551-2556.
[102] LENG L, ZENG X, SONG H, et al. Pd nanoparticles decorating flower-like Co3O4 nanowire clusters to form an efficient, carbon/binder-free cathode for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2015, 3(30):15626-15632.
[1] 张勇, 夏明仁. 熔模铸造壳型材料对熔融合金活性元素的化学稳定性研究[J]. 材料工程, 1999, 0(6): 20-21.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持