Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 165-171    DOI: 10.11868/j.issn.1001-4381.2017.001600
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PAN纤维热松弛行为控制与聚集态结构调控
康宸, 刘倓, 武帅, 赵雅娴, 徐樑华
北京化工大学 碳纤维及功能高分子教育部重点实验室, 北京 100029
Regulation of thermal relaxation behavior and aggregation structure of polyacrylonitrile fiber
KANG Chen, LIU Tan, WU Shuai, ZHAO Ya-xian, XU Liang-hua
Key Laboratory of Carbon Fiber and Functional Polymers(Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(2364 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 聚丙烯腈(PAN)纤维在纺丝过程中会形成受迫高弹形变,在受热条件下会出现物理收缩为代表的热松弛行为,发生解取向。通过热力学分析仪(TMA),动态力学分析仪(DMA),广角X射线衍射法(WAXD)等手段研究PAN纤维的热松弛行为,并且通过张力和温度对其进行控制。结果表明:PAN纤维纺丝过程形成的高弹形变约占10%以上,在高温下会迅速回复发生解取向。通过施加适当的张力和提高温度可以在不损失取向结构的同时将高弹形变转化为塑性形变。在张力和温度的作用下,纤维内部聚集态结构重排,分子链取向进一步提高,晶态结构进一步完善,纤维尺寸稳定性提高50%以上。研究表明经此方法处理的碳纤维微晶沿分子链排列更加规整,性能得到了有效提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康宸
刘倓
武帅
赵雅娴
徐樑华
关键词 PAN纤维碳纤维热松弛聚集态结构    
Abstract:Polyacrylonitrile (PAN) fibers which formed high-elastic deformation during the spinning process,have thermal relaxation behavior in the heat conditions, such as thermal shrinkage with disorientation. The thermal relaxation behavior of PAN fibers was investigated by thermomechanical analyzer (TMA), dynamic mechanical analyzer (DMA), wide-angle X-ray diffraction(WAXD).And PAN fibers aggregation structure changed by tension and temperature were analyzed. The results show that the forced high-elastic deformation in PAN fibers accounts for more than 10% which leads to disorientation at high temperature. With structure rearrangement under controlled conditions, the high-elastic deformation in PAN fibers can be transferred to plastic deformation by appropriate tension and temperature imposed to fibers without orientation structure loss. By imposing tension and temperature, further improvement is achieved in the regularity of aggregation structure and the orientation of the molecular chain, crystalline structure, and dimensional stability increase by more than 50%. The crystallites of PAN based carbon fibers treated by this method are more regularly arranged along the molecular chain, and the performance has been improved effectively.
Key wordspolyacrylonitrile fiber    carbon fiber    thermal relaxation    aggregation structure
收稿日期: 2017-12-25      出版日期: 2020-04-23
中图分类号:  TQ342.3  
通讯作者: 徐樑华(1960-),男,研究员,博士生导师,主要从事高性能聚丙烯腈基碳纤维的研究,联系地址:北京市朝阳区北三环东路15号北京化工大学碳纤维及复合材料研究所(100029),E-mail:xulh@mail.buct.edu.cn     E-mail: xulh@mail.buct.edu.cn
引用本文:   
康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
KANG Chen, LIU Tan, WU Shuai, ZHAO Ya-xian, XU Liang-hua. Regulation of thermal relaxation behavior and aggregation structure of polyacrylonitrile fiber. Journal of Materials Engineering, 2020, 48(4): 165-171.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001600      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/165
[1] 贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010:189. HE F. Carbon fiber and graphite fiber[M]. Beijing:Chemical Industry Press, 2010:189.
[2] PARK S J,LEE S Y.History and structure of carbon fibers[M]//Carbon Fibers. Berlin:Springer, 2015:1-30.
[3] 王占武,韩健,张永明,等. 聚丙烯腈基原丝的沸水收缩率对碳纤维性能的影响[J]. 新型炭材料, 1996,11(4):32-34. WANG Z W, HAN J, ZHANG Y M, et al. Effect of boiling water shrinkage of polyacrylonitrile precursor fibers on properties of carbon fibers[J]. New Carbon Materials, 1996,11(4):32-34.
[4] 王启芬,王成国,于美杰,等. XRD研究沸水热处理对PAN原丝结构与性能的影响[J]. 功能材料, 2008, 39(9):1458-1461. WANG Q F, WANG C G, YU M J, et al. Effect of boiling water heat treatment on the microstructure and properties of polyacrylonitrile precursor fibers investigated by XRD[J]. Journal of Functional Materials, 2008, 39(9):1458-1461.
[5] 赵洪江. PAN原丝取向与碳纤维模量的相关性研究[D]. 北京:北京化工大学, 2015. ZHAO H J. Study on correlation between polyacrylonitrile precursor orientation and tensile modulus of carbon fiber[D]. Beijing:Beijing University of Chemical Technology, 2015.
[6] 焦娜. 聚丙烯腈碳纤维原丝解取向行为的研究[D]. 北京:北京化工大学, 2014. JIAO N. The dissociation behavior of polyacrylonitrile based carbon fiber precursor[D]. Beijing:Beijing University of Chemical Technology, 2014.
[7] 华幼卿,金日光. 高分子物理[M]. 4版. 北京:化学工业出版社, 2013:139. HUA Y Q, JIN R G. Polymer physics[M]. 4th ed. Beijing:Chemical Industry Press, 2013:139.
[8] TRZNADEL M, KRYSZEWSKI M. Thermal shrinkage of oriented polymers[J]. Journal of Macromolecular Science:Part C, 1992, 32(3/4):259-300.
[9] BAHL O P, MANOCHA L M. Shrinkage behaviour of polyacrylonitrile during thermal treatment[J]. Macromolecular Materials & Engineering, 1975, 48(1):145-159.
[10] QIAN B, WU Z, HU P, et al. Studies on macromolecular entanglement Ⅱ modification of macromolecular entanglements by heat treatment[J]. Journal of Applied Polymer Science, 1993, 47(10):1881-1895.
[11] SAWAI D, KANAMOTO T, YAMAZAKI H, et al. Dynamic mechanical relaxations in poly(acrylonitrile) with different stereo regularities[J]. Macromolecules, 2004, 37(8):2839-2846.
[12] SABET E N, NOURPANAH P, ARBAB S. Quantitative analysis of entropic stress effect on the structural rearrangement during pre-stabilization of PAN precursor fibers[J]. Polymer, 2016, 90:138-146.
[13] 祖立武. 化学纤维成型工艺学[M]. 哈尔滨:哈尔滨工业大学出版社, 2014:368. ZU L W. Chemical fiber molding technology[M]. Harbin:Harbin Institute of Technology Press, 2014:368.
[14] ZHANG A, JIANG H, WU C, et al. Effect of internal stress on lattice strain in relaxed heat set pet filaments[J]. Textile Research Journal, 1985, 55(7):387-393.
[15] GUPTA A K, MAITI A K. Effect of heat treatment on the structure and mechanical properties of polyacrylonitrile fibers[J]. Journal of Applied Polymer Science, 1982, 27(7):2409-2416.
[16] 黄显雯,王微霞,欧阳琴,等. 热定型张力对PAN原丝结构与性能的影响[J]. 高科技纤维与应用, 2011, 36(6):13-16. HUANG X W, WANG W X, OUYANG Q, et al. Effect of heat setting tension on the structure and properties of polyacrylonitrile precursor fibers[J].Hi-Tech Fiber and Application,2011,36(6):13-16.
[17] MEINL J, KIRSTEN M, CHERIF C, et al. Influence of PAN-fiber stretching during thermal treatment on the stabilization reactions[J]. American Journal of Analytical Chemistry, 2016, 7(3):282-293.
[18] OUYANG Q, CHEN Y, WANG X, et al. Supramolecular structure of highly oriented wet-spun polyacrylonitrile fibers used in the preparation of high-performance carbon fibers[J]. Journal of Polymer Research, 2015, 22(12):1-10.
[1] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[2] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[3] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[4] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[5] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[6] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[7] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[8] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[9] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[10] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[11] 何烨, 肖建文, 姚烛威, 符应飘, 徐樑华, 曹维宇. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47(2): 146-152.
[12] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[13] 于长清, 陈利, 裴雨辰. 碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响[J]. 材料工程, 2018, 46(6): 101-105.
[14] 王迎芬, 刘刚, 彭公秋, 李韶亮, 谢富原. 国产T700级碳纤维/双马来酰亚胺树脂复合材料界面性能[J]. 材料工程, 2018, 46(4): 140-145.
[15] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn