Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 31-38    DOI: 10.11868/j.issn.1001-4381.2017.001609
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管纤维力-电耦合效应的实验研究
刘扶庆, 刘夏, 杨庆生
北京工业大学 机电学院, 北京 100124
Experimental Research on Electro-mechanical Coupling Effects of Carbon Nanotubes Fibers
LIU Fu-qing, LIU Xia, YANG Qing-sheng
College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(6019 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 CNT纤维是由沿轴向排列的高度取向的数十万根碳纳米管加捻组装而成。以实验方法研究CNT纤维在拉伸载荷与电流共同作用下的力学性质。实验结果表明,电流的引入会使纤维的模量和断裂强度显著降低。纤维在有电流通过时会产生轴向电致收缩力,电流强度越大,电致收缩力越大,在5mA时的收缩力约为2.5mN。将纤维轴向拉伸到2%应变,经过应力松弛使载荷趋于平稳后,首次通入电流或加大电流的强度,发现纤维的张力明显下降,主要原因是纤维模量变化引起的应力下降大于电致收缩力。在一定强度的电流下将纤维轴向拉伸到2%应变,经过应力松弛使载荷趋于平稳,然后改为通入相同强度的交流电流时,发现电致收缩力的响应很敏捷,当交流电流变化400个周期后,电致收缩力依然展现出较好的变化规律,这可使得CNT纤维作为新型电致驱动材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘扶庆
刘夏
杨庆生
关键词 碳纳米管纤维力-电耦合力学性质电致收缩力电致驱动    
Abstract:CNT fibers are composed of millions of highly aligned CNTs. The mechanical properties of CNT fibers when passing through different intensities of currents were investigated experimentally. The experimental results show that the introduction of current can obviously reduce the modulus and breaking strength of the fibers. When the current passes through the fibers, an axial electro-contraction force is produced, the electro-contraction force is increased with the increase of current intensity, the electro-contraction force at 5mA is about 2.5mN. By stretching the fiber to the 2% strain axially, after 1000s of the stress relaxation, the load tends to be stable, then switch on current or increase the current intensity, it is found that the tension of the fiber is obviously decreased due to the decrease of the stress caused by the change of modulus is greater than the increase of electric-contraction force. Stretching the fiber axially to 2% strain when passing through a certain intensity of current, after the stress relaxation, the load tends to be stable, then the same intensity of AC current is passed through, the response of the electro-contraction force is very quick.When the AC current changes experience 400 cycles, electro-contraction force exhibits good change, which makes the CNT-fibers as a new type of electro-actuation material.
Key wordsCNT-fiber    electro-mechanical coupling    mechanical property    electro-contraction force    electro-actuation characteristic
收稿日期: 2017-12-26      出版日期: 2018-09-19
中图分类号:  TB332  
通讯作者: 杨庆生(1962-),男,教授,博士,从事专业:新型材料和结构的力学问题,联系地址:北京市朝阳区北京工业大学机电学院(100124),E-mail:qsyang@bjut.edu.cn     E-mail: qsyang@bjut.edu.cn
引用本文:   
刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
LIU Fu-qing, LIU Xia, YANG Qing-sheng. Experimental Research on Electro-mechanical Coupling Effects of Carbon Nanotubes Fibers. Journal of Materials Engineering, 2018, 46(9): 31-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001609      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/31
[1] LI C, CHOU T W. Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators[J]. Applied Physics Letters, 2004, 84(1):121-123.
[2] JIANG H, YU M F, LIU B, et al. Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator[J]. Physical Review Letters, 2004, 93(18):185501.
[3] 刘珍红,孙晓刚,陈珑,等.碳纳米管纸/纳米硅复合电极的锂离子电池性能[J].材料工程,2018,46(1):99-105. LIU Z H,SUN X G,CHEN L,et al. Performance of lithium ion batteries with carbon nanotube paper/nano silicon composite electrode[J].Journal of Materials Engineering,2018,46(1):99-105.
[4] KIM P, LIEBER C M. Nanotube nanotweezers[J]. Science, 1999, 286(5447):2148.
[5] 余雪平, 兰竹瑶, 邹菁云, 等. 碳纳米管纤维的多功能特性及其驱动应用[J]. 材料导报, 2016, 30(5):132-137. YU X P, LAN Z Y, ZOU J Y, et al. Multifunctionality and actuation application of carbon nanotube fibers[J]. Materials Review, 2016, 30(5):132-137.
[6] 郭文瀚. 基于取向碳纳米管纤维的人工肌肉[D]. 上海:复旦大学, 2013. GUO W H. Artificial muscle based on aligned carbon nanotube fibers[D].Shanghai:Fudan University,2013.
[7] FOROUGHI J, BAUGHMAN R H. Torsional carbon nanotube artificial muscles[J]. Science, 2011, 334(6055):494-497.
[8] 朱路. 碳纳米管复合纤维超级电容器和太阳能电池[D]. 天津:天津大学, 2010. ZHU L. Carbon nanotube composite fibers for supercapacitors and solar cells[D].Tianjin:Tianjin University,2010.
[9] ZHAO Z,LI L.Ultrafast nano-oscillators based on interlayer-bridged carbon nanoscrolls[J]. Nanoscale Research Letters, 2011, 6(1):1-11.
[10] PONCHARAL P, WANG Z L, UGARTE D, et al.Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science, 1999, 283(5407):1513.
[11] PABLO P J D, HOWELL S, CRITTENDEN S, et al. Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes[J]. Applied Physics Letters, 1999, 75(25):3941-3943.
[12] GUO W L,GUO Y F.Giant axial electrostrictive deformation in carbon nanotubes[J]. Physical Review Letters, 2003, 91(11):115501.
[13] 彭川. 碳纳米管力学行为的分子动力学模拟[D]. 南昌:南昌航空大学, 2012. PENG C. Molecular dynamics simulation study on mechanical behaviors of carbon nanotubes[D]. Nanchang:Nanchang Hangkong University,2012.
[14] LI C Y, CHOU T W. Charge-induced strains in single-walled carbon nanotubes[J]. Nanotechnology, 2006, 17(18):4624-4628.
[15] GUO Y F, GUO W L. Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field[J]. Journal of Physics D-Applied Physics, 2003, 36(7):805.
[16] 杜娟, 李宪洲, 田宏伟,等. 碳纳米管最新性质-光学相关性[J].材料工程, 2006(增刊1):501-502. DU J,LI X Z,TIAN H W, et al. Newest property in carbon nanotube-correlation of optics[J].Journal of Materials Engineering,2006(Suppl 1):501-502.
[17] GUO W, LIU C, ZHAO F, et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber[J]. Advanced Materials, 2012, 24(39):5379-5384.
[18] SHANG Y, HE X, WANG C, et al. Large-deformation, multifunctional artificial muscles based on single-walled carbon nanotube yarns[J]. Advanced Engineering Materials, 2015, 17(1):14-20.
[19] MENG F, ZHANG X, LI R, et al. Electro-induced mechanical and thermal responses of carbon nanotube fibers[J]. Advanced Materials, 2014, 26(16):2480-2485.
[20] MENG F, WANG M, LU W, et al. An electromechanical behavior of reduced graphene oxide fiber[J]. Carbon, 2016, 105:244-247.
[21] BAUGHMAN R H. Playing nature's game with artificial muscles[J]. Science, 2005, 308(5718):63.
[22] SU R S, CHANG K L, SO I, et al. DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles[M]. Faculty of Engineering-Papers (Archive), 2008:466-470.
[1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[2] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[3] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[6] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[7] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[8] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[9] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[10] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[11] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[12] 郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
[13] 黄晓梦, 许佳雄. 周期性前驱体的预硫化处理对Cu2ZnSnS4薄膜的影响[J]. 材料工程, 2020, 48(3): 155-162.
[14] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[15] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn