Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (9): 31-38    DOI: 10.11868/j.issn.1001-4381.2017.001609
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管纤维力-电耦合效应的实验研究
刘扶庆, 刘夏, 杨庆生()
北京工业大学 机电学院, 北京 100124
Experimental Research on Electro-mechanical Coupling Effects of Carbon Nanotubes Fibers
Fu-qing LIU, Xia LIU, Qing-sheng YANG()
College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(6019 KB)   HTML ( 15 )  
输出: BibTeX | EndNote (RIS)      
摘要 

CNT纤维是由沿轴向排列的高度取向的数十万根碳纳米管加捻组装而成。以实验方法研究CNT纤维在拉伸载荷与电流共同作用下的力学性质。实验结果表明,电流的引入会使纤维的模量和断裂强度显著降低。纤维在有电流通过时会产生轴向电致收缩力,电流强度越大,电致收缩力越大,在5mA时的收缩力约为2.5mN。将纤维轴向拉伸到2%应变,经过应力松弛使载荷趋于平稳后,首次通入电流或加大电流的强度,发现纤维的张力明显下降,主要原因是纤维模量变化引起的应力下降大于电致收缩力。在一定强度的电流下将纤维轴向拉伸到2%应变,经过应力松弛使载荷趋于平稳,然后改为通入相同强度的交流电流时,发现电致收缩力的响应很敏捷,当交流电流变化400个周期后,电致收缩力依然展现出较好的变化规律,这可使得CNT纤维作为新型电致驱动材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘扶庆
刘夏
杨庆生
关键词 碳纳米管纤维力-电耦合力学性质电致收缩力电致驱动    
Abstract

CNT fibers are composed of millions of highly aligned CNTs. The mechanical properties of CNT fibers when passing through different intensities of currents were investigated experimentally. The experimental results show that the introduction of current can obviously reduce the modulus and breaking strength of the fibers. When the current passes through the fibers, an axial electro-contraction force is produced, the electro-contraction force is increased with the increase of current intensity, the electro-contraction force at 5mA is about 2.5mN. By stretching the fiber to the 2% strain axially, after 1000s of the stress relaxation, the load tends to be stable, then switch on current or increase the current intensity, it is found that the tension of the fiber is obviously decreased due to the decrease of the stress caused by the change of modulus is greater than the increase of electric-contraction force. Stretching the fiber axially to 2% strain when passing through a certain intensity of current, after the stress relaxation, the load tends to be stable, then the same intensity of AC current is passed through, the response of the electro-contraction force is very quick.When the AC current changes experience 400 cycles, electro-contraction force exhibits good change, which makes the CNT-fibers as a new type of electro-actuation material.

Key wordsCNT-fiber    electro-mechanical coupling    mechanical property    electro-contraction force    electro-actuation characteristic
收稿日期: 2017-12-26      出版日期: 2018-09-19
中图分类号:  TB332  
基金资助:国家自然科学基金项目(11502007);国家自然科学基金项目(11472020);国家自然科学基金项目(11632005)
通讯作者: 杨庆生     E-mail: qsyang@bjut.edu.cn
作者简介: 杨庆生(1962-), 男, 教授, 博士, 从事专业:新型材料和结构的力学问题, 联系地址:北京市朝阳区北京工业大学机电学院(100124), E-mail:qsyang@bjut.edu.cn
引用本文:   
刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
Fu-qing LIU, Xia LIU, Qing-sheng YANG. Experimental Research on Electro-mechanical Coupling Effects of Carbon Nanotubes Fibers. Journal of Materials Engineering, 2018, 46(9): 31-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001609      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/31
Fig.1  CNT纤维及其表面形貌
(a)CNT宏观纤维;(b)CNT纤维的表面形貌
Fig.2  试样制备中用到的粘接剂
(a)导电银浆;(b) HY-914快速粘接剂
Fig.3  CNT纤维力-电耦合试样及测试系统
Fig.4  实验设备
(a)波形发生器;(b)agilent T150 UTM微纳米拉伸仪
Item0mA 2.5mA 3.5mA 5mA
Strength/
MPa
Modulus/
GPa
Strength/
MPa
Modulus/
GPa
Strength/
MPa
Modulus/
GPa
Strength/
MPa
Modulus/
GPa
Sample 1 854.5 30.5 800.2 26.6 780.6 25.0 684.0 24.0
Sample 2 907.2 31.4 850.6 26.1 778.5 26.5 560.9 23.8
Sample 3 834.1 32.1 887.1 26.1 773.1 23.9 495.9 17.9
Sample 4 830.6 29.1 811.3 26.9 765.3 25.8 568.1 20.8
Sample 5 904.7 32.9 857.5 24.9 800.4 24.4 589.3 23.4
Sample 6 842.2 33.1 831.8 25.9 741.3 23.9 444.9 24.0
Sample 7 888.6 34.1 803.1 22.3 733.6 22.9 621.6 23.7
Average value 865.9 31.9 834.5 25.6 767.5 24.6 566.4 22.5
Variation coefficient 0.0385 0.0537 0.0387 0.0621 0.0303 0.0495 0.1389 0.1045
Table 1  不同电流强度下CNT纤维拉伸断裂强度、模量及其离散系数
Fig.5  电流强度分别为0, 2.5, 3.5, 5mA时的CNT纤维单次拉伸载荷-应变曲线(a)0mA; (b)2.5mA; (c)3.5mA; (d)5mA
Fig.6  通入0(a), 2.5(b), 3.5(c), 5mA(d)电流时的循环载荷-应变曲线(初始应变为0.005,应变增量为0.002)
Fig.7  当交替接通0mA和5mA电流时的CNT纤维单次轴向拉伸的载荷-应变曲线
Fig.8  CNT纤维在应力松弛后依次通入不同电流强度的载荷-时间曲线
Fig.9  CNT纤维在应力松弛阶段控制同一电流通断时的载荷-时间曲线
Fig.10  电致伸缩力与所施加电流的关系
Fig.11  纤维通入电流后轴向收缩的示意图
Fig.12  CNT纤维在应力松弛阶段通入交流电流后对应的载荷-时间曲线
Fig.13  CNT纤维在应力松弛阶段通入交流电流后对应的载荷-时间曲线
Fig.14  图 12中通入交流电流后的前5个周期和195~200个周期所对应的载荷-时间曲线
Fig.15  图 13中通入交流电流后的前8个周期和395~400个周期所对应的载荷-时间曲线
1 LI C , CHOU T W . Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators[J]. Applied Physics Letters, 2004, 84 (1): 121- 123.
doi: 10.1063/1.1638623
2 JIANG H , YU M F , LIU B , et al. Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator[J]. Physical Review Letters, 2004, 93 (18): 185501.
doi: 10.1103/PhysRevLett.93.185501
3 刘珍红, 孙晓刚, 陈珑, 等. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46 (1): 99- 105.
3 LIU Z H , SUN X G , CHEN L , et al. Performance of lithium ion batteries with carbon nanotube paper/nano silicon composite electrode[J]. Journal of Materials Engineering, 2018, 46 (1): 99- 105.
4 KIM P , LIEBER C M . Nanotube nanotweezers[J]. Science, 1999, 286 (5447): 2148.
doi: 10.1126/science.286.5447.2148
5 余雪平, 兰竹瑶, 邹菁云, 等. 碳纳米管纤维的多功能特性及其驱动应用[J]. 材料导报, 2016, 30 (5): 132- 137.
5 YU X P , LAN Z Y , ZOU J Y , et al. Multifunctionality and actuation application of carbon nanotube fibers[J]. Materials Review, 2016, 30 (5): 132- 137.
6 郭文瀚.基于取向碳纳米管纤维的人工肌肉[D].上海: 复旦大学, 2013.
6 GUO W H. Artificial muscle based on aligned carbon nanotube fibers[D].Shanghai: Fudan University, 2013.
7 FOROUGHI J , BAUGHMAN R H . Torsional carbon nanotube artificial muscles[J]. Science, 2011, 334 (6055): 494- 497.
doi: 10.1126/science.1211220
8 朱路.碳纳米管复合纤维超级电容器和太阳能电池[D].天津: 天津大学, 2010.
8 ZHU L. Carbon nanotube composite fibers for supercapacitors and solar cells[D].Tianjin: Tianjin University, 2010.
9 ZHAO Z , LI L . Ultrafast nano-oscillators based on interlayer-bridged carbon nanoscrolls[J]. Nanoscale Research Letters, 2011, 6 (1): 1- 11.
10 PONCHARAL P , WANG Z L , UGARTE D , et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science, 1999, 283 (5407): 1513.
doi: 10.1126/science.283.5407.1513
11 PABLO P J D , HOWELL S , CRITTENDEN S , et al. Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes[J]. Applied Physics Letters, 1999, 75 (25): 3941- 3943.
doi: 10.1063/1.125501
12 GUO W L , GUO Y F . Giant axial electrostrictive deformation in carbon nanotubes[J]. Physical Review Letters, 2003, 91 (11): 115501.
doi: 10.1103/PhysRevLett.91.115501
13 彭川.碳纳米管力学行为的分子动力学模拟[D].南昌: 南昌航空大学, 2012.
13 PENG C. Molecular dynamics simulation study on mechanical behaviors of carbon nanotubes[D]. Nanchang: Nanchang Hangkong University, 2012.
14 LI C Y , CHOU T W . Charge-induced strains in single-walled carbon nanotubes[J]. Nanotechnology, 2006, 17 (18): 4624- 4628.
doi: 10.1088/0957-4484/17/18/015
15 GUO Y F , GUO W L . Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field[J]. Journal of Physics D-Applied Physics, 2003, 36 (7): 805.
doi: 10.1088/0022-3727/36/7/306
16 杜娟, 李宪洲, 田宏伟, 等. 碳纳米管最新性质-光学相关性[J]. 材料工程, 2006, (增刊1): 501- 502.
16 DU J , LI X Z , TIAN H W , et al. Newest property in carbon nanotube-correlation of optics[J]. Journal of Materials Engineering, 2006, (Suppl 1): 501- 502.
17 GUO W , LIU C , ZHAO F , et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber[J]. Advanced Materials, 2012, 24 (39): 5379- 5384.
doi: 10.1002/adma.201201845
18 SHANG Y , HE X , WANG C , et al. Large-deformation, multifunctional artificial muscles based on single-walled carbon nanotube yarns[J]. Advanced Engineering Materials, 2015, 17 (1): 14- 20.
doi: 10.1002/adem.201400163
19 MENG F , ZHANG X , LI R , et al. Electro-induced mechanical and thermal responses of carbon nanotube fibers[J]. Advanced Materials, 2014, 26 (16): 2480- 2485.
doi: 10.1002/adma.v26.16
20 MENG F , WANG M , LU W , et al. An electromechanical behavior of reduced graphene oxide fiber[J]. Carbon, 2016, 105, 244- 247.
doi: 10.1016/j.carbon.2016.04.037
21 BAUGHMAN R H . Playing nature's game with artificial muscles[J]. Science, 2005, 308 (5718): 63.
doi: 10.1126/science.1099010
22 SU R S , CHANG K L , SO I , et al. DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles[M]. Faculty of Engineering-Papers (Archive), 2008: 466- 470.
[1] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[2] 张金栋, 孙洪霖, 刘刚, 姚佳楠, 陈春海, 王明. 聚芳醚酮树脂非等温结晶动力学及其复合材料湿热老化性能[J]. 材料工程, 2022, 50(10): 139-147.
[3] 王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
[4] 崔雪峰, 许泽水, 姚远洋, 李明星, 叶昉, 成来飞. 颗粒级配对Si3N4w/Si3N4复合材料弯曲强度与介电性能的影响[J]. 材料工程, 2022, 50(10): 29-37.
[5] 张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
[6] 李国青, 杨丽霞, 余敏. 生物态碳-陶瓷基复合材料制备方法的研究现状[J]. 材料工程, 2022, 50(10): 1-14.
[7] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[8] 秦建雨, 赵翰鹏, 姚金雨, 张文超, 杨荣杰. 有机磷阻燃剂插层钙基蒙脱土纳米复合物的制备和表征[J]. 材料工程, 2022, 50(9): 78-88.
[9] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[10] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[11] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[12] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[13] 任素娥, 王雅娜, 杨程. 固体浮力材料用复合泡沫的研究进展[J]. 材料工程, 2022, 50(6): 86-96.
[14] 邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
[15] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn