Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 141-147    DOI: 10.11868/j.issn.1001-4381.2017.001624
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于改进主成分分析法的低密度聚乙烯光氧老化行为及综合评价模型
代军1,2, 晏华1, 桑练勇1, 胡志德1, 张寒松1
1. 中国人民解放军后勤工程学院 化学与材料工程系, 重庆 401331;
2. 海军驻温州地区军事代表室, 浙江 舟山 316000
Photo-oxidative Degradation Behavior and Comprehensive Evaluation Model of LDPE Based on Improving Principal Components Analysis
DAI Jun1,2, YAN Hua1, SANG Lian-yong1, HU Zhi-de1, ZHANG Han-song1
1. Department of Chemistry & Material Engineering, Logistic Engineering University of PLA, Chongqing 401331, China;
2. Navy Representative Office in Wenzhou, Zhoushan 316000, Zhejiang, China
全文: PDF(859 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在紫外光氧环境中对低密度聚乙烯(LDPE)进行了64天的人工加速老化实验,以研究其在光氧环境下的老化行为及规律。利用力学实验、衰减全反射红外光谱技术(ATR-FTIR)、热重分析法(TGA)和差示扫描量热法(DSC)分别研究了低密度聚乙烯(LDPE)在光氧老化环境中力学性能、化学结构、热稳定性和熔融特性的变化规律,引入层次分析法(AHP)确定评价指标权重,采用改进主成分分析法(PCA)构建了LDPE的光氧老化综合评价模型。结果表明:随老化时间增加LDPE拉伸强度、弯曲强度、冲击强度分别下降了39.7%,32.3%,96.4%。分子结构中产生羰基、羟基等含氧基团,分子链断裂,支链增加。起始热分解特征温度和熔融峰峰值温度下降,LDPE表面破坏严重,老化作用剧烈。老化综合评价指标随老化时间呈现三段式的变化趋势,改进PCA法评价结果更为合理,适用于LDPE光氧老化行为的综合评价。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代军
晏华
桑练勇
胡志德
张寒松
关键词 低密度聚乙烯光氧老化主成分分析法层次分析法综合评价指标    
Abstract:The artificial accelerated aging test of low density polyethylene (LDPE) was carried out for different time periods up to 64 days under UV environment to study the photo-oxidative degradation behavior and the rule. The influence on mechanical properties, chemical structure, thermal stability and melting property evolution of LDPE after photo-oxidation aging was studied by mechanics experiments, attenuated total reflection infrared spectroscopy (ATR-FTIR), thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Analytic hierarchy procedure (AHP) was used to determine the weighing values for assessment index of LDPE, and the photo-oxidative degradation comprehensive evaluation model of LDPE was established on the base of improving traditional principal components analysis (PCA). The results show with increasing aging time, the tensile strength, bending strength and impact strength of LDPE are declined by 39.7%, 32.3% and 96.4%, respectively. The concentration of carbonyl and hydroxyl groups are increased, the rupture of molecular chain is intensified. The initial thermal decomposition temperature and melting temperature peak value are declined and the LDPE surface microstructure is seriously damaged and the aging is severe. The comprehensive evaluation parameters exhibit changing trend in three stages. The evaluation results of improved PCA are more reasonable and all the above-mentioned shows that improved PCA is appropriate for the comprehensive evaluation of photo-oxidative degradation behavior of LDPE.
Key wordslow density polyethylene    photo-oxidative degradation    principal components analysis (PCA)    analytic hierarchy procedure (AHP)    combined evaluating parameter
收稿日期: 2017-07-18      出版日期: 2018-06-14
中图分类号:  O632.1  
通讯作者: 晏华(1963-),男,教授,博士,主要从事智能材料与高分子材料研究,联系地址:重庆市沙坪坝区大学城后勤工程学院化学与材料工程系(401331),E-mail:yanhuacq@sina.com     E-mail: yanhuacq@sina.com
引用本文:   
代军, 晏华, 桑练勇, 胡志德, 张寒松. 基于改进主成分分析法的低密度聚乙烯光氧老化行为及综合评价模型[J]. 材料工程, 2018, 46(6): 141-147.
DAI Jun, YAN Hua, SANG Lian-yong, HU Zhi-de, ZHANG Han-song. Photo-oxidative Degradation Behavior and Comprehensive Evaluation Model of LDPE Based on Improving Principal Components Analysis. Journal of Materials Engineering, 2018, 46(6): 141-147.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001624      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/141
[1] BAEK B K, LA Y H, NA W J, et al. A kinetic study on the supercritical decrosslinking reaction of silane-crosslinked polyethylene in a continuous process[J]. Polymer Degradation and Stability, 2016, 126:75-80.
[2] CHENG J, PAN Y, YAO J, et al. Mechanisms and kinetics studies on the thermal decomposition of micron poly (methyl methacrylate) and polystyrene[J]. Journal of Loss Prevention in the Process Industries, 2016, 40(1):139-146.
[3] 郭骏骏, 晏华, 包河彬, 等. 衰减全反射红外光谱法的高密度聚乙烯自然老化特性研究[J]. 光谱学与光谱分析, 2015, 35(6):1520-1524. GUO J J, YAN H, BAO H B, et al. Attenuated total reflection infrared spectroscopy for degradation profile of high density polyethylene after weathering aging[J]. Spectroscopy and Spectral Analysis, 2015,35(6):1520-1524.
[4] GAUTHIER E, LAYCOCK B, CUOQ FJ, et al. Correlation between chain microstructure changes and embrittlement of LLDPE-based films during photo-and thermo-oxidative degradation[J]. Polymer Degradation and Stability.2013, 98:425-435.
[5] KLEMENS G, SUSANNE B, GERNOT M. Characterization of the influence of specimen thickness on the aging behavior of a polypropylene based model compound[J]. Polymer Degradation and Stability, 2015, 111:185-193.
[6] SONG D D, GAO J, LI X G, et al. Evaluation of aging behavior of polypropylene in natural environment by principal component analysis[J]. Polymer Testing, 2014, 33:131-137.
[7] PASTORELLI G, CUCCI C GARCIA O, et al. Environmentally induced color change during natural degradation of selected polymers[J]. Polymer Degradation and Stability, 2013, 11:1-12.
[8] 张菊华, 朱向荣, 李高阳, 等. 近红外光谱法结合化学计量学方法用于茶油真伪鉴别分析[J].分析化学, 2011,39(5):748-749. ZHANG J H, ZHU X R, LI G Y, et al. Identification of camellia oils by near infrared spectroscopy combined with chemometrics[J]. Chinese Journal of Analytical Chemistry, 2011,39(5):748-749.
[9] 魏远隆, 尹昌海, 陈贵平, 等. 近红外光谱结合主成分分析鉴别不同产地的南丰蜜桔[J].光谱学与光谱分析, 2013, 33(11):3024-3027. WEI Y L, YIN C H, CHEN G P, et al. Identification of Nanfeng mandarin from different origins by using near infrared spectroscopy coupled with principal components analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(11):3024-3027.
[10] CHUNG L Y, MELISSA A L, NIKOLICA B G, et al. The effect of common agrichemicals on the environmental stability of polyethylene films[J]. Polymer Degradation and Stability, 2015, 120:53-60.
[11] 郭骏骏, 晏华, 代军, 等. 基于主成分分析的高密度聚乙烯热氧老化特性研究[J]. 后勤工程学院学报, 2015, 31(3):81-86. GUO J J, YAN H, DAI J, et al. Study on thermal oxidative ageing properties of high density polyethylene based on principle component analysis[J]. Journal of Logistical Engineering University, 2015, 31(3):81-86.
[12] 郭骏骏, 晏华, 胡志德, 等. 基于主成分分析的高密度聚乙烯环境适应行为研究[J]. 材料工程, 2015, 43(1):96-103. GUO J J, YAN H, HU Z D, et al. Adaptive behavior to environment of HDPE by principal component analysis[J]. Journal of Materials Engineering, 2015, 43(1):96-103.
[13] LV Y D, HUANG Y J, YANG J L, et al. Outdoor and accelerated laboratory weathering of polypropylene:a comparison and correlation study[J]. Polymer Degradation and Stability, 2015, 112(1):145-159.
[14] ZHAO Q L, LI X G, GAO J, et al. Evaluation of ethylene-propylene-dine monomer (EPDM) aging in UV/condensation environment by principal component analysis (PCA)[J]. Materials Letters, 2009, 63(3):1647-1649.
[15] 陈奎, 张云天, 郑小平, 等. 主成分分析法的改进及其在工程材料综合评价中的应用[J]. 机械工程材料, 2013, 37(7):90-93. CHEN K, ZHANG Y T, ZHENG X P, et al. Improvement of Principal component analysis and its application in engineering materials comprehensive evaluation[J]. Materials for Mechanical Engineering, 2013, 37(7):90-93.
[16] DING Y, McKINNOM M B, STOLIAROY S I, et al. Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants:application to poly (lactic acid) blended with melamine and ammonium polyphosphate[J]. Polymer Degradation and Stability, 2016,129:347-362.
[1] 郭骏骏, 晏华, 胡志德, 杨健健. 基于主成分分析的高密度聚乙烯环境适应行为研究[J]. 材料工程, 2015, 43(1): 96-103.
[2] 钟磊, 梁基照. 聚乙烯熔融纺丝测量的拉伸主曲线分析[J]. 材料工程, 2011, 0(5): 38-40,52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn