Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (2): 148-155    DOI: 10.11868/j.issn.1001-4381.2018.000003
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
退火处理对激光沉积制造TC4钛合金组织及力学性能影响
钦兰云1, 何晓娣1, 李明东1, 杨光1,*(), 高博文2
1 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 沈阳 110136
2 沈阳工业大学 化工装备学院, 辽宁 辽阳 111003
Effect of annealing treatment on microstructures and mechanical properties of TC4 titanium alloy manufactured by laser deposition
Lan-yun QIN1, Xiao-di HE1, Ming-dong LI1, Guang YANG1,*(), Bo-wen GAO2
1 Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
2 School of Chemical Equipment, Shenyang University of Technology, Liaoyang 111003, Liaoning, China
全文: PDF(8164 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以TC4球形粉末为原料,采用激光沉积制造技术制备TC4钛合金厚壁件。通过光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)等方法研究了退火处理对激光沉积制造TC4显微组织及力学性能的影响。结果表明:试样经α+β两相区退火处理后,显微组织为网篮组织,经β单相区退火后,组织转变为魏氏组织;退火试样力学性能仍存在各向异性:Z向试样强度较低,塑性较好,而XY向试样强度高,塑性较差,退火温度对试样的各向异性具有明显影响;XY向试样拉伸性能存在较明显的分散性;α+β两相区退火处理后两个方向上均为韧性断裂,β单相区退火处理后试样强度与塑性大幅下降,且XY向试样为脆性断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钦兰云
何晓娣
李明东
杨光
高博文
关键词 激光沉积制造TC4钛合金退火温度显微组织力学性能    
Abstract

TC4 titanium alloy bulk specimens were prepared by laser deposition manufacturing.The effect of annealing treatment on mechanical properties, microstructure of LDMed TC4 titanium alloy was studied by optical microstructure (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD).The experimental results show that the microstructure is basketweave structure after α+β two-phase region annealing treatment and is transformed to Widmanstatten structure after β phase region annealing treatment.The mechanical properties still show significant anisotropy after annealing:Z-direction samples exhibit low strength and high plasticity, while XY-direction samples show high strength and low plasticity.The samples have a greatly decrease in strength and plasticity after β phase region annealing treatment.The annealing temperature has obvious influence on the anisotropy of the samples. The tensile properties of XY-direction samples are evidently scattered.Both direction samples exhibit ductile fracture after α+β two-phase region annealing treatment. The strength and plasticity of the samples decrease greatly after β single phase region annealing treatment, and the XY-direction samples are brittle fracture.

Key wordslaser deposition manufacturing    TC4 titanium alloy    annealing temperature    microstructure    mechanical property
收稿日期: 2018-01-03      出版日期: 2020-03-03
中图分类号:  TG146.2+3  
基金资助:国家重点研发计划项目(2016YFB1100504);国家自然科学基金资助项目(51505301);工信部民用飞机专项科研项目(MJZ-2016-G-71)
通讯作者: 杨光     E-mail: yang-guang@sau.edu.cn
作者简介: 杨光(1978-), 男, 教授, 博士, 主要从事激光沉积制造和修复技术等方面的研究, 联系地址:辽宁省沈阳市沈北新区沈阳航空航天大学航空制造工艺数字化国防重点学科实验室(110136), E-mail:yang-guang@sau.edu.cn
引用本文:   
钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Lan-yun QIN, Xiao-di HE, Ming-dong LI, Guang YANG, Bo-wen GAO. Effect of annealing treatment on microstructures and mechanical properties of TC4 titanium alloy manufactured by laser deposition. Journal of Materials Engineering, 2020, 48(2): 148-155.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000003      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/148
Fig.1  拉伸取样示意图
Fig.2  拉伸试样尺寸
Fig.3  退火处理工艺曲线
Fig.4  退火处理激光沉积制造TC4显微组织
(a), (b)900 ℃; (c), (d)930 ℃; (e), (f)960 ℃; (g), (h)990 ℃
Fig.5  不同退火温度下的XRD谱图
Fig.6  退火处理试样室温拉伸性能随温度变化曲线
(a)抗拉强度;(b)伸长率
Fig.7  Z向试样拉伸断口附近截面显微组织
1-低倍;2-高倍  (a)900 ℃;(b)930 ℃;(c)960 ℃;(d)990 ℃
Fig.8  XY向试样拉伸断口附近截面显微组织
1-低倍;2-高倍 (a)900 ℃;(b)930 ℃;(c)960 ℃;(d)990 ℃
Fig.9  拉伸性能分布图
Fig.10  不同温度下退火试样拉伸断口形貌
1-Z向;2-XY向 (a)900 ℃;(b)930 ℃;(c)960 ℃; (d)990 ℃
1 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42 (4): 1- 4.
doi: 10.3969/j.issn.1671-5276.2013.04.001
1 LU B H , LI D C . Development of the additive manufacturing(3D printing) technology[J]. Mechanical Building and Automation, 2013, 42 (4): 1- 4.
doi: 10.3969/j.issn.1671-5276.2013.04.001
2 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35 (10): 2690- 2698.
2 WANG H M . Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (10): 2690- 2698.
3 童邵辉, 李东, 邓增辉, 等. 电子束快速成形TC4合金的组织和断裂性能[J]. 材料工程, 2019, 47 (1): 125- 130.
3 TONG S H , LI D , DENG Z H , et al. Microstructure and fracture properties of electron beam rapid forming TC4 alloy[J]. Journal of Materials Engineering, 2019, 47 (1): 125- 130.
4 THIJS L , VERHEAGHE F , CRAEGHS T , et al. A study of the microstructure evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58 (9): 3303- 3312.
doi: 10.1016/j.actamat.2010.02.004
5 FORMANOIR C , MICHOTTE S , RIGO O , et al. Electron beam melted Ti-6Al-4V:microstructure, texture and mechanical behavior of the as-built and heat-treated material[J]. Materials Science and Engineering:A, 2016, 652, 105- 119.
doi: 10.1016/j.msea.2015.11.052
6 VRANCKEN B , THIJS L , KRUTH J P , et al. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting[J]. Acta Mater, 2014, 68, 150- 158.
doi: 10.1016/j.actamat.2014.01.018
7 LIU Z , QIN Z X , LIU F , et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition[J]. Mater Charact, 2014, 97, 132- 139.
doi: 10.1016/j.matchar.2014.09.002
8 BRANDL E , PALM F , MICHAILOV V , et al. Mechanical properties of additive manufactured titanium(Ti-6Al-4V)blocks deposited by a solid-state laser and wire[J]. Materials & Design, 2011, 32 (10): 4665- 4675.
9 BAUFELD B , BRANDL E , VAN DER BIEST O . Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition[J]. Journal of Materials Processing Technology, 2011, 211 (6): 1146- 1158.
doi: 10.1016/j.jmatprotec.2011.01.018
10 VRANCKEN B , THIJS L , KRUTH J P , et al. Heat treatment of Ti6Al4V produced by selective laser melting microstructure and properties[J]. Journal of Alloys and Compounds, 2012, 541 (15): 177- 185.
11 ZHANG Q , CHEN J , ZHAO Z , et al. Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy[J]. Materials Science and Engineering: A, 2016, 673, 204- 212.
doi: 10.1016/j.msea.2016.07.040
12 辛社伟, 赵永庆. 关于钛合金热处理和析出相的讨论[J]. 金属热处理, 2006, 31 (9): 39- 42.
doi: 10.3969/j.issn.0254-6051.2006.09.010
12 XIN S W , ZHAO Y Q . Discussion about the heat treatment and precipitated phases of titanium alloy[J]. Heat Treatment of Metals, 2006, 31 (9): 39- 42.
doi: 10.3969/j.issn.0254-6051.2006.09.010
13 杨光, 王文东, 钦兰云, 等. 退火处理及沉积方向对激光沉积TA15钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2016, 45 (12): 3295- 3301.
13 YANG G , WANG W D , QIN L Y , et al. Effect of annealing treatment and deposition direction on microstructures and mechanical properties of laser deposition manufactured TA15 titanium alloy[J]. Rare Metal Materials and Engineering, 2016, 45 (12): 3295- 3301.
14 ZHAO Z , CHEN J , LU X F , et al. Formation mechanism of α variant and its influence on the tensile properties of laser soild formed Ti-6Al-4V titanium alloy[J]. Materials Science and Engineering: A, 2017, 691, 16- 24.
doi: 10.1016/j.msea.2017.03.035
15 YANG J J , YU H C , WANG Z M , et al. Effect of crystallographic orientation on mechanical anisotropy of select laser melted Ti-6Al-4V alloy[J]. Materials Characterization, 2017, 127, 137- 145.
doi: 10.1016/j.matchar.2017.01.014
16 杨光, 宋海浩, 钦兰云, 等. 钛合金激光沉积热行为及组织演变[J]. 稀有金属材料与工程, 2016, 45 (10): 2598- 2604.
16 YANG G , SONG H H , QIN L Y , et al. Thermal behavior and microstructure evolution of titanium alloy by laser deposition[J]. Rare Metal Materials and Engineering, 2016, 45 (10): 2598- 2604.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn