Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 148-155    DOI: 10.11868/j.issn.1001-4381.2018.000003
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
退火处理对激光沉积制造TC4钛合金组织及力学性能影响
钦兰云1, 何晓娣1, 李明东1, 杨光1, 高博文2
1. 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 沈阳 110136;
2. 沈阳工业大学 化工装备学院, 辽宁 辽阳 111003
Effect of annealing treatment on microstructures and mechanical properties of TC4 titanium alloy manufactured by laser deposition
QIN Lan-yun1, HE Xiao-di1, LI Ming-dong1, YANG Guang1, GAO Bo-wen2
1. Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China;
2. School of Chemical Equipment, Shenyang University of Technology, Liaoyang 111003, Liaoning, China
全文: PDF(8164 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以TC4球形粉末为原料,采用激光沉积制造技术制备TC4钛合金厚壁件。通过光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)等方法研究了退火处理对激光沉积制造TC4显微组织及力学性能的影响。结果表明:试样经α+β两相区退火处理后,显微组织为网篮组织,经β单相区退火后,组织转变为魏氏组织;退火试样力学性能仍存在各向异性:Z向试样强度较低,塑性较好,而XY向试样强度高,塑性较差,退火温度对试样的各向异性具有明显影响;XY向试样拉伸性能存在较明显的分散性;α+β两相区退火处理后两个方向上均为韧性断裂,β单相区退火处理后试样强度与塑性大幅下降,且XY向试样为脆性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钦兰云
何晓娣
李明东
杨光
高博文
关键词 激光沉积制造TC4钛合金退火温度显微组织力学性能    
Abstract:TC4 titanium alloy bulk specimens were prepared by laser deposition manufacturing.The effect of annealing treatment on mechanical properties, microstructure of LDMed TC4 titanium alloy was studied by optical microstructure (OM),scanning electron microscopy (SEM) and X-ray diffraction (XRD).The experimental results show that the microstructure is basketweave structure after α+β two-phase region annealing treatment and is transformed to Widmanstatten structure after β phase region annealing treatment.The mechanical properties still show significant anisotropy after annealing:Z-direction samples exhibit low strength and high plasticity, while XY-direction samples show high strength and low plasticity.The samples have a greatly decrease in strength and plasticity after β phase region annealing treatment.The annealing temperature has obvious influence on the anisotropy of the samples. The tensile properties of XY-direction samples are evidently scattered.Both direction samples exhibit ductile fracture after α+β two-phase region annealing treatment. The strength and plasticity of the samples decrease greatly after β single phase region annealing treatment, and the XY-direction samples are brittle fracture.
Key wordslaser deposition manufacturing    TC4 titanium alloy    annealing temperature    microstructure    mechanical property
收稿日期: 2018-01-03      出版日期: 2020-03-03
中图分类号:  TG146.2+3  
通讯作者: 杨光(1978-),男,教授,博士,主要从事激光沉积制造和修复技术等方面的研究,联系地址:辽宁省沈阳市沈北新区沈阳航空航天大学航空制造工艺数字化国防重点学科实验室(110136),E-mail:yang-guang@sau.edu.cn     E-mail: yang-guang@sau.edu.cn
引用本文:   
钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
QIN Lan-yun, HE Xiao-di, LI Ming-dong, YANG Guang, GAO Bo-wen. Effect of annealing treatment on microstructures and mechanical properties of TC4 titanium alloy manufactured by laser deposition. Journal of Materials Engineering, 2020, 48(2): 148-155.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000003      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/148
[1] 卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化,2013, 42(4):1-4. LU B H, LI D C. Development of the additive manufacturing(3D printing) technology[J]. Mechanical Building and Automation,2013, 42(4): 1-4.
[2] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报,2014, 35(10): 2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.
[3] 童邵辉,李东,邓增辉,等.电子束快速成形TC4合金的组织和断裂性能[J].材料工程,2019,47(1):125-130. TONG S H,LI D,DENG Z H,et al.Microstructure and fracture properties of electron beam rapid forming TC4 alloy[J].Journal of Materials Engineering,2019,47(1):125-130.
[4] THIJS L, VERHEAGHE F, CRAEGHS T, et al. A study of the microstructure evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010,58(9): 3303-3312.
[5] FORMANOIR C, MICHOTTE S, RIGO O, et al. Electron beam melted Ti-6Al-4V:microstructure,texture and mechanical behavior of the as-built and heat-treated material[J]. Materials Science and Engineering:A, 2016,652: 105-119.
[6] VRANCKEN B, THIJS L, KRUTH J P, et al. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting[J]. Acta Mater, 2014, 68: 150-158.
[7] LIU Z, QIN Z X, LIU F, et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition[J].Mater Charact,2014,97:132-139.
[8] BRANDL E, PALM F, MICHAILOV V, et al. Mechanical properties of additive manufactured titanium(Ti-6Al-4V)blocks deposited by a solid-state laser and wire[J]. Materials & Design, 2011, 32(10): 4665-4675.
[9] BAUFELD B, BRANDL E, VAN DER BIEST O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition [J]. Journal of Materials Processing Technology, 2011, 211(6): 1146-1158.
[10] VRANCKEN B, THIJS L, KRUTH J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting microstructure and properties[J]. Journal of Alloys and Compounds, 2012, 541(15): 177-185.
[11] ZHANG Q, CHEN J, ZHAO Z, et al.Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy[J]. Materials Science and Engineering: A, 2016, 673: 204-212.
[12] 辛社伟,赵永庆. 关于钛合金热处理和析出相的讨论[J]. 金属热处理, 2006, 31(9):39-42. XIN S W, ZHAO Y Q. Discussion about the heat treatment and precipitated phases of titanium alloy[J]. Heat Treatment of Metals, 2006, 31(9): 39-42.
[13] 杨光,王文东,钦兰云,等. 退火处理及沉积方向对激光沉积TA15钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2016, 45(12):3295-3301. YANG G,WANG W D,QIN L Y,et al. Effect of annealing treatment and deposition direction on microstructures and mechanical properties of laser deposition manufactured TA15 titanium alloy[J]. Rare Metal Materials and Engineering, 2016, 45(12): 3295-3301.
[14] ZHAO Z, CHEN J, LU X F, et al. Formation mechanism of α variant and its influence on the tensile properties of laser soild formed Ti-6Al-4V titanium alloy[J]. Materials Science and Engineering: A, 2017, 691: 16-24.
[15] YANG J J, YU H C, WANG Z M, et al. Effect of crystallographic orientation on mechanical anisotropy of select laser melted Ti-6Al-4V alloy[J]. Materials Characterization, 2017, 127: 137-145.
[16] 杨光,宋海浩,钦兰云,等. 钛合金激光沉积热行为及组织演变[J]. 稀有金属材料与工程, 2016, 45(10): 2598-2604. YANG G, SONG H H, QIN L Y, et al. Thermal behavior and microstructure evolution of titanium alloy by laser deposition[J]. Rare Metal Materials and Engineering, 2016, 45(10): 2598-2604.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[13] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[14] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[15] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn