Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (5): 36-43    DOI: 10.11868/j.issn.1001-4381.2018.000004
  综述 本期目录 | 过刊浏览 | 高级检索 |
600℃高温钛合金双性能整体叶盘锻件制备技术研究进展
蔡建明1, 田丰2, 刘东3, 李娟1, 弭光宝1, 叶俊青2
1. 中国航发北京航空材料研究院 先进钛合金航空科技重点实验室, 北京 100095;
2. 贵州 安大航空锻造有限责任公司, 贵州 安顺 561005;
3. 西北工业大学 材料学院, 西安 710072
Research Progress in Manufacturing Technology of 600℃ High Temperature Titanium Alloy Dual Property Blisk Forging
CAI Jian-ming1, TIAN Feng2, LIU Dong3, LI Juan1, MI Guang-bao1, YE Jun-qing2
1. Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Guizhou Anda Aviation Forging Co., Ltd., Anshun 561005, Guizhou, China;
3. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(2172 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了进一步挖掘600℃高温钛合金整体叶盘的性能潜力,通过材料技术和工艺技术的优化,创新发展了双性能整体叶盘设计思路及制备技术,即控制叶片和盘体分别采用最为适合航空发动机实际使用工况要求的组织状态,实现材料性能和结构设计的融合。在回顾整体叶盘结构发展历程及应用的基础上,分析先进发动机结构设计由追求均质整体叶盘向双性能整体叶盘转变的原因,重点介绍600℃高温钛合金TA29双性能整体叶盘锻件制备技术的最新研究进展。与分区控温锻造相比,分区控温热处理更容易实现双重组织的控制,即叶片获得等轴均匀细小的双态组织,盘体通过精确可控的β区热处理得到细晶的片层组织,过渡区的显微组织沿整体叶盘径向平缓变化。最后,指出600℃高温钛合金双性能整体叶盘应用研究未来拟解决的关键问题,包括整体叶盘叶片和盘体组织性能精确控制、过渡区位置及尺寸控制、关键服役性能评价与研究等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡建明
田丰
刘东
李娟
弭光宝
叶俊青
关键词 600℃高温钛合金双性能整体叶盘分区控温热处理组织控制    
Abstract:In order to further explore the potential performance of 600℃ high temperature titanium alloy blisk, the design idea and corresponding manufacturing technology of dual property blisk (DP-Blisk) have been innovated by optimizing of material technology and process technology, namely, microstructural control of blade region and disc body are respectively suitable for the actual service condition requirements of aeroengine to integrate material properties and structural design perfectly. Based on reviewing the development process and application of titanium alloy blisk, the reasons for the development from homogeneous blisk to DP-Blisk of structural design in advanced aeroengines were analyzed, the latest research progress in manufacturing technology of 600℃ high temperature titanium alloy TA29 DP-Blisk forging was introduced. Compared with separated region temperature-controlled forging (SRTCF) process, separated region temperature-controlled heat treatment (SRTCHT) process can achieve the expected dual microstructure more easily, that is, the blade region obtains uniform and fine bi-modal structure, and the disc body obtains fine lamellar structure by means of controllable SRTCHT process, the microstructure of transitional region changes gradually along the radial direction of the blisk forging. Finally, key issues need to be solved in the future in application research of DP-Blisk of 600℃ high temperature titanium alloy were proposed, including precise control of microstructure and performance of blade and disc body, position and size control of the transitional region, and key service performance evaluation and research.
Key words600℃ high temperature titanium alloy    dual property blisk    separated region temperature-controlled heat treatment    microstructural control
收稿日期: 2018-01-05      出版日期: 2018-05-16
中图分类号:  TG146.2  
通讯作者: 弭光宝(1981-),男,博士,高级工程师,主要从事先进高温钛合金及其纳米复合材料、阻燃性能等方面研究,联系地址:北京市81信箱15分箱(100095),E-mail:miguangbao@163.com     E-mail: miguangbao@163.com
引用本文:   
蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
CAI Jian-ming, TIAN Feng, LIU Dong, LI Juan, MI Guang-bao, YE Jun-qing. Research Progress in Manufacturing Technology of 600℃ High Temperature Titanium Alloy Dual Property Blisk Forging. Journal of Materials Engineering, 2018, 46(5): 36-43.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000004      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/36
[1] 陈光.EJ200发动机高压压气机结构设计改进[J].航空发动机,2004,30(2):1-4.CHEN G.Improved design of the EJ200 HP compressor[J].Aeroengine,2004,30(2):1-4.
[2] 江和甫,古远兴,卿华.航空发动机的新结构及其强度设计[J].燃气涡轮试验与研究,2007,20(2):1-4.JIANG H F,GU Y X,QING H.New structure and strength design of aeroengine[J].Gas Turbine Experiment and Research,2007,20(2):1-4.
[3] 李其汉,王延荣.航空发动机结构强度设计问题[M].上海:上海交通大学出版社,2014.LI Q H,WANG Y R.The design problem of aero-engine structure strength[M].Shanghai:Shanghai Jiao Tong University Press,2014.
[4] BACHE M R.A review of dwell sensitive fatigue in titanium alloys:the role of microstructure,texture and operation conditions[J].International Journal of Fatigue,2003,25:1079-1087.
[5] WILLIAMS J C.Alternate materials choices-some challenges to the increased use of Ti alloys[J].Materials Science and Engineering:A,1999,263(2):107-111.
[6] 蔡建明,曹春晓.新一代600℃高温钛合金材料的合金设计及应用展望[J].航空材料学报,2014,34(4):27-36.CAI J M,CAO C X.Alloy design and application expectation of a new generation 600℃ high temperature titanium alloy[J].Journal of Aeronautical Materials,2014,34(4):27-36.
[7] 蔡建明,弭光宝,高帆,等.航空发动机用先进高温钛合金材料技术研究与发展[J].材料工程,2016,44(8):1-10.CAI J M,MI G B,GAO F,et al.Research and development of some advanced high temperature titanium alloys for aero-engine[J].Journal of Materials Engineering,2016,44(8):1-10.
[8] 王清江,刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1-26.WANG Q J,LIU J R,YANG R.High temperature titanium alloys:status and perspective[J].Journal of Aeronautical Materials,2014,34(4):1-26.
[9] LVTJERING G,WILLIAMS J C.Titanium[M].Berlin,Germany:Springer,2003:245.
[10] 黄春峰.现代航空发动机整体叶盘及其制造技术[J].航空制造技术,2006(4):94-100.HUANG C F.Modern aeroengine integral blisk and its manufacturing technology[J].Aeronautical Manufacturing Technology,2006(4):94-100.
[11] WILLIAMS J C,STARKE E A.Progress in structural materials for aerospace systems[J].Acta Materialia,2003,51:5775-5799.
[12] 薛松柏,张亮,皋利利,等.航空器制造中的焊接技术[J].航空制造技术,2009(19):26-29.XUE S B,ZHANG L,GAO L L,et al.Welding technology of aircraft manufacturing[J].Aeronautical Manufacturing Technology,2009(19):26-29.
[13] 萨拉瓦纳穆图H I H,罗杰斯G F C,科恩H,等.燃气涡轮原理[M].6版.北京:航空工业出版社,2015.SARAVANARMUTTOO H I H,ROGERS G F C,COHEN H,et al.Gas turbine theory[M].6th ed.Beijing:Aeronautical Industry Press,2015.
[14] 李杰,陈光,吕跃进.世界著名商用航空发动机要览[M].北京:航空工业出版社,2016.LI J,CHEN G,LV Y J.The summary of world famous commercial aeroengines[M].Beijing:Aeronautical Industry Press,2016.
[15] NOWOTNY S,SCHAREK S,BEYER E,et al.Laser beam build-up welding:precision in repair,surface cladding,and direct 3D metal deposition[J].Journal of Thermal Spray Technology,2007,16(3):344-348.
[16] 高峻,罗皎,李淼泉.航空发动机双性能盘制造技术与机理的研究进展[J].航空材料学报,2012,32(6):37-43.GAO J,LUO J,LI M Q.Advance in manufacture technology and mechanism of aero-engine dual property disk[J].Journal of Aeronautical Materials,2012,32(6):37-43.
[17] 方昌德.航空发动机的发展研究[M].北京:航空工业出版社,2009.FANG C D.Development research of aero-engine[M].Beijing:Aeronautical Industry Press,2009.
[18] GAYDA J,FURRER D.Dual microstructure heat treatment[J].Advanced Materials&Processes,2003,7:36-40.
[19] MATHEY G F.Method of making superalloy turbine disks having graded coarse and fine grains:US 5312497[P].1994-05-17.
[20] GANESH S,TOLVERT R C.Differentially heat treated article and apparatus and process for the manufacture thereof:US 6478896B1[P].2002-11-12.
[21] GAYDA J,GABB T P,KANTZOS P T.Heat treatment devices and method of operation thereof to produce dual microstructure superalloy discs:US 6660110B1[P].2003-12-09.
[22] 陈光.航空发动机结构设计分析[M].北京:北京航空航天大学出版社,2006.CHEN G.Structural design analysis of aero-engine[M].Beijing:Beihang University Press,2006.
[23] GORMAN M D.Dual-property alpha-beta titanium alloy forgings:US 5795413[P].1998-08-18.
[24] 姚泽坤,郭鸿镇,刘建超,等.双性能钛合金压气机盘的成形机理[J].中国有色金属学报,2000,10(3):378-382.YAO Z K,GUO H Z,LIU J C,et al.Forging mechanism of two-phase Ti-alloy compressor disc with dual-property disk[J].The Chinese Journal of Nonferrous Metals,2000,10(3):378-382.
[25] 刘莹莹,姚泽坤,秦春,等.Ti3Al/TC11合金焊接界面的高温性能[J].稀有金属材料与工程,2012,41(10):1828-1832.LIU Y Y,YAO Z K,QIN C,et al.Elevated temperature properties of the welding interface for Ti3Al/TC11 alloy[J].Rare Metal Materials and Engineering,2012,41(10):1828-1832.
[26] QIN C,YAO Z K,NING Y Q,et al.Hot deformation behavior of TC11/T-22Al-25Nb dual-alloy in isothermal compression[J].Transactions of Nonferrous Metals Society of China,2015,25(7):2195-2205.
[27] HELM D.Recent titanium research and development in Germany[C]//Ti-2007 Science and Technology,11th World Conference on Titanium.New Osaka:Metallurgy Industry Press,2007:5-7.
[28] 张小伟.金属增材制造技术在航空发动机领域的应用[J].航空动力学报,2010,31(1):10-16.ZHANG X W.Application of metal additive manufacturing in aero-engine[J].Journal of Aerospace Power,2010,31(1):10-16.
[29] 弭光宝,黄旭,曹京霞,等.航空发动机钛火试验技术研究新进展[J].航空材料学报,2016,36(3):20-26.MI G B,HUANG X,CAO J X,et al.Experimental technique of titanium fire in aero-engine[J].Journal of Aeronautical Materials,2016,36(3):20-26.
[1] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[2] 刘莹莹, 郑立静, 张虎. 快速凝固Al-Fe-V-Si耐热铝合金研究进展[J]. 材料工程, 2015, 43(11): 91-97.
[3] 卡布洛夫E. H., 格拉西莫夫B. B., 杜布罗夫斯基B. A., 瓦希克E. M.. 定向结晶时高温合金组织控制的工艺前景[J]. 材料工程, 1996, 0(5): 16-20.
[4] 卡布洛夫E. H., 格拉西莫夫B. B., 杜布罗夫斯基B. A., 瓦希克E. M.. 定向结晶时高温合金组织控制的工艺前景[J]. 材料工程, 1996, 0(5): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn