Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 145-151    DOI: 10.11868/j.issn.1001-4381.2018.000033
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电气石/ZnO复合材料光催化机制
亓淑艳, 王德朋, 赵亚栋, 胥焕岩
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150080
Photocatalytic mechanism of tourmaline/ZnO composites
QI Shu-yan, WANG De-peng, ZHAO Ya-dong, XU Huan-yan
College of Materials Science & Engineering, Harbin University of Science and Technology, Harbin 150080, China
全文: PDF(3667 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用一步水热法制备电气石/ZnO的复合材料。利用X射线衍射仪、扫描电子显微镜、X射线荧光光谱仪、UV-Vis DRS对样品的结构、形貌和光学性能进行表征。在可见光照射下,以酸性品红为降解物,研究电气石/ZnO复合材料的光催化性能,并通过动力学模型模拟酸性品红被降解的过程。结果表明:电气石加入并没有对ZnO的花瓣形貌产生影响,但对其光催化性能影响很大。随着电气石含量的增大,光催化性能先增长后降低。当电气石含量为5%(质量分数)时,光生电子-空穴复合概率降低,禁带宽度也下降,羟基自由基(·OH)的浓度增大,光催化效率达到最大96.62%,并且发现ZnO和电气石/ZnO复合材料的催化降解遵循一级动力学模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
亓淑艳
王德朋
赵亚栋
胥焕岩
关键词 电气石/ZnO光催化羟基自由基(·OH)一级动力学    
Abstract:Tourmaline/ZnO composite material was prepared by one-step hydrothermal method. The structure, morphology and optical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, X-ray fluorescence spectroscopy and UV-Vis DRS. Under visible light irradiation, the photocatalytic performance of tourmaline/ZnO composite was studied using acid fuchsin as a degradation product. The kinetic model was used to simulate the degradation process of acid fuchsin. The results show that the addition of tourmaline does not affect the morphology of ZnO petals, but has a great influence on its photocatalytic properties. With the increase of the content of tourmaline, the photocatalytic performance first increases and then decreases. When the content of tourmaline is 5%(mass fraction), the recombination probability of photogenerated electron-hole decreases, the forbidden band width decreases, the concentration of hydroxyl radical (·OH) increases and the photocatalytic efficiency reaches the maximum 96.62%, ZnO and tourmaline/ZnO catalytic degra-dation of composites follows a first-order kinetic model.
Key wordstourmaline/ZnO    photocatalysis    hydroxyl radical(·OH)    first-order kinetics
收稿日期: 2018-01-08      出版日期: 2019-09-18
中图分类号:  P578.953  
基金资助: 
通讯作者: 亓淑艳(1976-),女,博士,副教授,研究方向:磁性功能材料和半导体材料,联系地址:黑龙江省哈尔滨市哈尔滨理工大学南区林园路4号材料科学与工程学院(150040),E-mail:qishuyan10@163.com     E-mail: qishuyan10@163.com
引用本文:   
亓淑艳, 王德朋, 赵亚栋, 胥焕岩. 电气石/ZnO复合材料光催化机制[J]. 材料工程, 2019, 47(9): 145-151.
QI Shu-yan, WANG De-peng, ZHAO Ya-dong, XU Huan-yan. Photocatalytic mechanism of tourmaline/ZnO composites. Journal of Materials Engineering, 2019, 47(9): 145-151.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000033      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/145
[1] 杨丰,王飞,贾若飞,等. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程,2018,46(10):20-29. YANG F,WANG F,JIA R F,et al, Application research and progress of 0D, 1D and 2D ZnO nanomaterials[J]. Journal of Materials Engineering,2018,46(10):20-29.
[2] NEKOUEI F,NEKOUEI S. Comparative study of photocatalytic activities of Zn5(OH)8Cl2·H2O and ZnO nanostructures in ciprofloxacin degradation:response surface methodology and kinetic studies[J]. Science of the Total Environment,2017,601/602:508-517.
[3] 芦佳,王辉虎,董一帆,等. RGO/ZnO纳米棒复合材料的合成及光催化性能[J]. 材料工程,2016,44(12):48-53. LU J,WANG H H,DONG Y F,et al. Synthesis and photocatalytic properties of RGO/ZnO nanorod composites[J]. Jouranl of Materials Engineering, 2016,44(12):48-53.
[4] LI Z H, LI G, DU Y,et al. Photovoltaic characteristics of ZnO nanoparticles[J]. Chemical Journal of Chinese Universities,2012,33(3):560-563.
[5] HAN X G,HE H Z,KUANG Q,et al. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites[J]. The Journal of Physical Chemistry C,2008,113(2):584-589.
[6] WANG J. Synthesis and photocatalytic properties research of ZnO nanomaterials and core-shell structure[D].Changchun:University of Chinese Academy of Sciences,2016.
[7] 吴闪,朱延俊,赵梦媛,等. Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程,2018,46(5):133-138. WU S,ZHU Y J,ZHAO M Y,et al. Effects of co-dopings on electrical behaviors of CeO2-based solid electrolyte[J]. Journal of Materials Engineering,2018,46(5):133-138.
[8] ZHANG Z,LIU H,ZHANG H,et al. Synthesis of spindle-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance[J]. Superlattices & Microstructures,2014,65:134-145.
[9] LIU P,GUO Y,XU Q,et al. Enhanced photocatalytic perfor-mance of ZnO/multi-walled carbon nanotube nanocomposites for dye degradation[J]. Ceramics International,2014,40(4):5629-5633.
[10] LIAO S,HUANG D,YU D,et al. Preparation and charact-erization of ZnO/TiO2, SO2-4/ZnO/TiO2 photocatalyst and their photocatalysis[J]. Journal of Photochemistry & Photobiology A Chemistry,2004,168(1/2):7-13.
[11] LOW J,CAO S,YU J,et al. Two-dimensional layered composite photocatalysts[J]. Chemical Communications,2014,50(74):10768-10777.
[12] YU L,WANG C,CHEN F,et al. Investigating the synergistic effects in tourmaline/TiO2-based heterogeneous photocatalysis:underlying mechanism insights[J]. Journal of Molecular Catalysis A:Chemical,2016,411:1-8.
[13] GUO Y,XIA Y B,MIN J H,et al.Influence of polar tourmaline substrates on the growth of ZnO nanoplates[J]. Journal of Inorganic Materials,2010,25(7):717-720.
[14] PRASAD G M,NETAJI K D,DATTATRAY K D,et al. Erratum to:cetyltrimethylammonium bromide capped 9-anthral-dehyde nanoparticles for selective recognition of phosphate anion in aqueous solution based on fluorescence quenching and appli-cation for analysis of chloroquine[J]. Journal of Fluorescence, 2015,25(1):39-39.
[15] HU Y M,CHEN X B,TANG M R. Research development and prospects of functional tourmaline composites[J]. Front Earth Sci,2014,21(5):331-337.
[16] 郭昀,夏义本,闵嘉华,等.极性电气石衬底对ZnO纳米片生长的影响[J].无机材料学报,2010,25(7):717-720. GUO Y,XIA Y B,MIN J H,et al.Influence of polar tourmaline substrates on the growth of ZnO nanoplates[J]. Journal of Inorganic Materials,2010,25(7):717-720.
[17] ZHANG G,QIN X. Efficient photocatalytic degradation of gaseous formaldehyde by the TiO2/tourmaline composites[J]. Materials Research Bulletin,2013,48(10):3743-3749.
[18] SONG S H,KANG M. Decomposition of 2-chlorophenol using a tourmaline photocatalytic system[J]. Journal Industrial Engineering Chemistry,2008,14:785-791.
[19] LIU W C. Enhanced photocatalytic activity of nanoscaled TiO2 by natural schorl[D]. Harbin:Harbin University of Science and Technology,2014.
[20] LIU S,TIAN J,WANG L,et al. One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes[J]. Catalysis Science & Technology,2012,2:339-344.
[21] XU B H,LIN B Z,WANG Q Q,et al. Anatase TiO2-pillared hexaniobate mesoporous nanocomposite with enhanced photo-catalytic activity[J]. Microporous and Mesoporous Materials,2012,147(1):79-85.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[3] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[4] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[5] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[6] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[7] 张钦库, 胡大伟, 闫翻辽, 左安志, 赵强. 米粒状CaIn2O4/In2O3的静电纺丝法制备及其光催化性能[J]. 材料工程, 2020, 48(11): 25-31.
[8] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[9] 李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
[10] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[11] 曾宝平, 贾瑛, 许国根, 李明, 冯锐. CTAB作用下TiO2/g-C3N4的制备及光催化降解偏二甲肼废水[J]. 材料工程, 2019, 47(9): 139-144.
[12] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[13] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[14] 李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
[15] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn