Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 108-113    DOI: 10.11868/j.issn.1001-4381.2018.000038
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能
陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博
济南大学 机械工程学院, 济南 250022
Tribological properties of modified phenolic resin ceramic friction materials
CHEN Hai-long, YANG Xue-feng, WANG Shou-ren, LU Chong-yang, WU Yuan-bo
School of Mechanical Engineering, University of Jinan, Jinan 250022, China
全文: PDF(6141 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以普通酚醛树脂、硼改性酚醛树脂、三聚氰胺改性酚醛树脂为黏结剂,以陶瓷纤维为增强纤维,制备了3种酚醛树脂陶瓷摩擦材料。对其冲击韧性和硬度进行实验测试,采用摩擦磨损试验机考察其摩擦磨损性能,采用扫描电子显微镜(SEM)和X射线能谱仪分析其磨损表面形貌及其成分,并探讨其磨损机制。结果表明:硼改性酚醛树脂黏结剂能够提高摩擦材料的硬度,三聚氰胺改性酚醛树脂黏结剂能够提高摩擦材料的冲击韧性,降低摩擦材料硬度;在摩擦过程中三聚氰胺改性酚醛树脂在高温下炭化,在摩擦材料表面形成一层致密的摩擦层,摩擦层的存在使摩擦材料的摩擦因数相对比较稳定,降低了摩擦材料的磨损率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海龙
杨学锋
王守仁
鹿重阳
吴元博
关键词 酚醛树脂摩擦材料摩擦磨损力学性能刹车片    
Abstract:Three kinds of phenolic resin ceramic brake pads were prepared with phenolic resin, boron modified phenolic resin, melamine modified phenolic resin as binder, and ceramic fiber as reinforcing fiber. The impact toughness and hardness of the material were tested. The friction and wear properties were investigated by friction and wear tester. The worn surface morphology and its composition were analyzed by scanning electron microscope (SEM) and X-ray energy spectrometer, and the wear mechanism was also discussed. The experimental results show that boron modified phenolic resin binder can improve the hardness of friction materials, melamine modified phenolic resin can improve the impact toughness of materials, reducing material hardness; in the friction process, melamine modified phenolic resin carbonized at high temperature, forming a dense layer of friction on the surface of friction material. The existence of friction layer makes the friction coefficient of the friction material become relatively stable, and reduces the wear rate of the friction material.
Key wordsphenolic resin    friction material    friction and wear    mechanical property    brake pad
收稿日期: 2018-01-10      出版日期: 2019-06-17
中图分类号:  TG113  
通讯作者: 杨学锋(1977-),男,教授,博士,研究方向为切削刀具的磨损,联系地址:山东省济南市南辛庄西路336号济南大学机械工程学院A40(250022),E-mail:me_yangxf@ujn.edu.cn     E-mail: me_yangxf@ujn.edu.cn
引用本文:   
陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
CHEN Hai-long, YANG Xue-feng, WANG Shou-ren, LU Chong-yang, WU Yuan-bo. Tribological properties of modified phenolic resin ceramic friction materials. Journal of Materials Engineering, 2019, 47(6): 108-113.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000038      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/108
[1] MALACHOVA K,KUKUTSCHOVA J,RYBKOVA Z,et al.Toxicity and mutagenicity of low-metallic automotive brake pad materials[J].Ecotoxicology and Environmental Safety,2016,131:37-44.
[2] LANGH N,RABENSTEIN M, ROSENLÖCHER J,et al.Full-ceramic brake systems for high performance friction applications[J].Journal of the European Ceramic Society,2016,36(15):3823-3832.
[3] BIAN G,WU H.Friction and surface fracture of a silicon carbide ceramic brake disc tested against a steel pad[J].Journal of the European Ceramic Society,2015,35(14):3797-3807.
[4] STADLER Z,KRNEL K,KOVA J,et al.Tribochemical reactions on sliding surface of the sintered metallic brake linings against SiC ceramic brake disk[J].Wear,2012,292/293:232-238.
[5] 杨阳,刘伯威,熊翔.一种新型陶瓷基汽车刹车片摩擦磨损性能的研究[J].粉末冶金技术,2010,28(5):336-340. YANG Y,LIU B W,XIONG X.Study on friction and wear properties of a new ceramic-based automobile brake pad[J].Powder Metallurgy Technology,2010,28(5):336-340.
[6] 刘玲,王发辉.增强纤维对陶瓷基摩擦材料摩擦磨损性能的影响[J].摩擦学学报,2012,32(1):27-33. LIU L,WANG F H.Effect of reinforced fibers on friction and wear properties of ceramic-based friction materials[J].Journal of Tribology,2012,32(1):27-33.
[7] SEKUNOWO O I,DUROWAYE S I,LAWAL G I.Synthesis and characterisation of iron millscale particles reinforced ceramic matrix composite[J].Journal of King Saud University-Engineering Sciences,2019,31(1):78-85.
[8] 李长虹,冯雨,何林,等.纳米粒子对丁腈改性酚醛树脂摩擦磨损性能的影响[J].高分子材料科学与工程,2009,25(2):59-61. LI C H,FENG Y,HE L,et al.Effect of nanoparticles on friction and wear properties of phenolic resin modified by nitrile-butadiene[J].Science and Engineering of Polymer Materials,2009,25(2):59-61.
[9] LAGEL M C,HAI L,PIZZI A,et al. Automotive brake pads made with a bioresin matrix[J].Industrial Crops and Products,2016,85(1):372-381.
[10] 彭金涛,任天斌.碳纤维增强树脂基复合材料的最新应用现状[J].中国胶粘剂,2014,23(8):48-52. PENG J T,REN T B.The latest application of carbon fiber reinforced resin matrix composites[J].China Adhesives,2014,23(8):48-52.
[11] CAI P, WANG Y M, WANG T M. Effect of resins on thermal, mechanical and tribological properties of friction materials[J].Tribology International,2015,87:1-10.
[12] GURUNATH P V,BIJWE J. Friction and wear studies on brake-pad materials based on newly developed resin[J].Wear,2007,263:1212-1219.
[13] CONG P,WANG H,WU X,et al.Braking performance of an organic brake pad based on a chemically modified phenolic resin binder[J].J Macromol Sci,2012,49(6):518-527.
[14] KIM Y C, CHO M H, KIM S J,et al.The effect of phenolic resin,potassium titanate, and CNSL on the tribological properties of brake friction materials[J].Wear,2008,264(3/4):204-210.
[15] MUTLU I,ELDOGAN O,FINDIK F.Tribological properties of some phenolic composites suggested for automotive brakes[J].Tribology International,2006,39(4):317-325.
[16] 董景隆.改性酚醛树脂/碳纤维复合材料的研究[D].长春:长春工业大学,2016. DONG J L.The study of phenol resin modification and the carbon fiber composites[D].Changchun:Changchun University of Technology,2016.
[17] 陈孝飞,李树杰,闫联生,等.硼改性酚醛树脂的固化及裂解[J].复合材料学报,2011,25(5):89-95. CHEN X F,LI S J,YAN L S,et al.Curing and pyrolysis of boron-modified phenolic resin[J].Acta Materiae Compositae Sinica,2011,25(5):89-95.
[18] 易新龙,冯安妮,邵文尧,等.硼改性酚醛树脂的合成及其模塑料力学性能研究[J].材料导报,2015,29(8):381-384. YI X L,FENG A N,SHAO W R,et al. Synthesis of boron modified phenolic resin and the mechanic performance of its molding plastics[J].Materials Review,2015,29(8):381-384.
[1] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[2] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[3] 刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
[4] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[5] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[6] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[7] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[8] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[9] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[10] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[11] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[12] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[13] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[14] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[15] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn