Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (6): 108-113    DOI: 10.11868/j.issn.1001-4381.2018.000038
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能
陈海龙, 杨学锋(), 王守仁, 鹿重阳, 吴元博
济南大学 机械工程学院, 济南 250022
Tribological properties of modified phenolic resin ceramic friction materials
Hai-long CHEN, Xue-feng YANG(), Shou-ren WANG, Chong-yang LU, Yuan-bo WU
School of Mechanical Engineering, University of Jinan, Jinan 250022, China
全文: PDF(6141 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以普通酚醛树脂、硼改性酚醛树脂、三聚氰胺改性酚醛树脂为黏结剂,以陶瓷纤维为增强纤维,制备了3种酚醛树脂陶瓷摩擦材料。对其冲击韧性和硬度进行实验测试,采用摩擦磨损试验机考察其摩擦磨损性能,采用扫描电子显微镜(SEM)和X射线能谱仪分析其磨损表面形貌及其成分,并探讨其磨损机制。结果表明:硼改性酚醛树脂黏结剂能够提高摩擦材料的硬度,三聚氰胺改性酚醛树脂黏结剂能够提高摩擦材料的冲击韧性,降低摩擦材料硬度;在摩擦过程中三聚氰胺改性酚醛树脂在高温下炭化,在摩擦材料表面形成一层致密的摩擦层,摩擦层的存在使摩擦材料的摩擦因数相对比较稳定,降低了摩擦材料的磨损率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海龙
杨学锋
王守仁
鹿重阳
吴元博
关键词 酚醛树脂摩擦材料摩擦磨损力学性能刹车片    
Abstract

Three kinds of phenolic resin ceramic brake pads were prepared with phenolic resin, boron modified phenolic resin, melamine modified phenolic resin as binder, and ceramic fiber as reinforcing fiber. The impact toughness and hardness of the material were tested. The friction and wear properties were investigated by friction and wear tester. The worn surface morphology and its composition were analyzed by scanning electron microscope (SEM) and X-ray energy spectrometer, and the wear mechanism was also discussed. The experimental results show that boron modified phenolic resin binder can improve the hardness of friction materials, melamine modified phenolic resin can improve the impact toughness of materials, reducing material hardness; in the friction process, melamine modified phenolic resin carbonized at high temperature, forming a dense layer of friction on the surface of friction material. The existence of friction layer makes the friction coefficient of the friction material become relatively stable, and reduces the wear rate of the friction material.

Key wordsphenolic resin    friction material    friction and wear    mechanical property    brake pad
收稿日期: 2018-01-10      出版日期: 2019-06-17
中图分类号:  TG113  
基金资助:国家自然科学基金(51575234);国家自然科学基金(51872122);中国博士后科学基金(2017M620286);山东省重点研发计划(2018CXGC0809);山东省农机装备研发创新计划(2018YF012)
通讯作者: 杨学锋     E-mail: me_yangxf@ujn.edu.cn
作者简介: 杨学锋(1977-), 男, 教授, 博士, 研究方向为切削刀具的磨损, 联系地址:山东省济南市南辛庄西路336号济南大学机械工程学院A40(250022), E-mail:me_yangxf@ujn.edu.cn
引用本文:   
陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
Hai-long CHEN, Xue-feng YANG, Shou-ren WANG, Chong-yang LU, Yuan-bo WU. Tribological properties of modified phenolic resin ceramic friction materials. Journal of Materials Engineering, 2019, 47(6): 108-113.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000038      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/108
Ingredient Mass fraction/%
Phenolic resin 8
Boron modified phenolic resin 8
Melamine modified phenolic resin 8
Ceramic fiber 8
Barium sulfate 23
Calcium sulfate 15
Friction powder 4
Wollastonite 6
Graphite 8
Others 35
Table 1  摩擦材料配方
Fig.1  冲击韧性测试试样
Fig.2  硬度测试试样
Material Hardness(HRL) Impact toughness/
(kJ·cm-2)
Phenolic resin ceramic 55±0.5 3.72±0.005
Boron modified phenolic resin ceramic 70±0.5 3.98±0.005
Melamine modified phenolic resin ceramic 60±0.5 4.23±0.005
Table 2  摩擦材料的力学性能
Fig.3  摩擦材料断面形貌SEM照片
(a)酚醛树脂陶瓷;(b)硼改性酚醛陶瓷树脂;(c)三聚氰胺改性树脂
Fig.4  摩擦材料的摩擦因数(a)和磨损率(b)
Fig.5  摩擦材料的磨损表面形貌SEM照片
(a)酚醛树脂陶瓷;(b)硼改性酚醛树脂陶瓷;(c)三聚氰胺改性树脂陶瓷
Fig.6  三聚氰胺树脂摩擦材料形貌SEM照片和EDS谱图
(a)SEM照片;(b)点1 EDS谱图;(c)点2 EDS谱图;(d)点3 EDS谱图
1 MALACHOVA K , KUKUTSCHOVA J , RYBKOVA Z , et al. Toxicity and mutagenicity of low-metallic automotive brake pad materials[J]. Ecotoxicology and Environmental Safety, 2016, 131, 37- 44.
doi: 10.1016/j.ecoenv.2016.05.003
2 LANGH N , RABENSTEIN M , ROSENLÖCHER J , et al. Full-ceramic brake systems for high performance friction applications[J]. Journal of the European Ceramic Society, 2016, 36 (15): 3823- 3832.
doi: 10.1016/j.jeurceramsoc.2016.04.040
3 BIAN G , WU H . Friction and surface fracture of a silicon carbide ceramic brake disc tested against a steel pad[J]. Journal of the European Ceramic Society, 2015, 35 (14): 3797- 3807.
doi: 10.1016/j.jeurceramsoc.2015.07.009
4 STADLER Z , KRNEL K , KOVA J , et al. Tribochemical reactions on sliding surface of the sintered metallic brake linings against SiC ceramic brake disk[J]. Wear, 2012, 292/293, 232- 238.
doi: 10.1016/j.wear.2012.05.002
5 杨阳, 刘伯威, 熊翔. 一种新型陶瓷基汽车刹车片摩擦磨损性能的研究[J]. 粉末冶金技术, 2010, 28 (5): 336- 340.
5 YANG Y , LIU B W , XIONG X . Study on friction and wear properties of a new ceramic-based automobile brake pad[J]. Powder Metallurgy Technology, 2010, 28 (5): 336- 340.
6 刘玲, 王发辉. 增强纤维对陶瓷基摩擦材料摩擦磨损性能的影响[J]. 摩擦学学报, 2012, 32 (1): 27- 33.
6 LIU L , WANG F H . Effect of reinforced fibers on friction and wear properties of ceramic-based friction materials[J]. Journal of Tribology, 2012, 32 (1): 27- 33.
7 SEKUNOWO O I , DUROWAYE S I , LAWAL G I . Synthesis and characterisation of iron millscale particles reinforced ceramic matrix composite[J]. Journal of King Saud University-Engineering Sciences, 2019, 31 (1): 78- 85.
doi: 10.1016/j.jksues.2017.03.003
8 李长虹, 冯雨, 何林, 等. 纳米粒子对丁腈改性酚醛树脂摩擦磨损性能的影响[J]. 高分子材料科学与工程, 2009, 25 (2): 59- 61.
doi: 10.3321/j.issn:1000-7555.2009.02.018
8 LI C H , FENG Y , HE L , et al. Effect of nanoparticles on friction and wear properties of phenolic resin modified by nitrile-butadiene[J]. Science and Engineering of Polymer Materials, 2009, 25 (2): 59- 61.
doi: 10.3321/j.issn:1000-7555.2009.02.018
9 LAGEL M C , HAI L , PIZZI A , et al. Automotive brake pads made with a bioresin matrix[J]. Industrial Crops and Products, 2016, 85 (1): 372- 381.
10 彭金涛, 任天斌. 碳纤维增强树脂基复合材料的最新应用现状[J]. 中国胶粘剂, 2014, 23 (8): 48- 52.
10 PENG J T , REN T B . The latest application of carbon fiber reinforced resin matrix composites[J]. China Adhesives, 2014, 23 (8): 48- 52.
11 CAI P , WANG Y M , WANG T M . Effect of resins on thermal, mechanical and tribological properties of friction materials[J]. Tribology International, 2015, 87, 1- 10.
doi: 10.1016/j.triboint.2015.02.007
12 GURUNATH P V , BIJWE J . Friction and wear studies on brake-pad materials based on newly developed resin[J]. Wear, 2007, 263, 1212- 1219.
doi: 10.1016/j.wear.2006.12.050
13 CONG P , WANG H , WU X , et al. Braking performance of an organic brake pad based on a chemically modified phenolic resin binder[J]. J Macromol Sci, 2012, 49 (6): 518- 527.
doi: 10.1080/10601325.2012.676928
14 KIM Y C , CHO M H , KIM S J , et al. The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials[J]. Wear, 2008, 264 (3/4): 204- 210.
15 MUTLU I , ELDOGAN O , FINDIK F . Tribological properties of some phenolic composites suggested for automotive brakes[J]. Tribology International, 2006, 39 (4): 317- 325.
doi: 10.1016/j.triboint.2005.02.002
16 董景隆.改性酚醛树脂/碳纤维复合材料的研究[D].长春: 长春工业大学, 2016.
16 DONG J L.The study of phenol resin modification and the carbon fiber composites[D].Changchun: Changchun University of Technology, 2016.
17 陈孝飞, 李树杰, 闫联生, 等. 硼改性酚醛树脂的固化及裂解[J]. 复合材料学报, 2011, 25 (5): 89- 95.
17 CHEN X F , LI S J , YAN L S , et al. Curing and pyrolysis of boron-modified phenolic resin[J]. Acta Materiae Compositae Sinica, 2011, 25 (5): 89- 95.
18 易新龙, 冯安妮, 邵文尧, 等. 硼改性酚醛树脂的合成及其模塑料力学性能研究[J]. 材料导报, 2015, 29 (8): 381- 384.
18 YI X L , FENG A N , SHAO W R , et al. Synthesis of boron modified phenolic resin and the mechanic performance of its molding plastics[J]. Materials Review, 2015, 29 (8): 381- 384.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[6] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[7] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[8] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[9] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[10] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn