Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 108-113    DOI: 10.11868/j.issn.1001-4381.2018.000038
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能
陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博
济南大学 机械工程学院, 济南 250022
Tribological properties of modified phenolic resin ceramic friction materials
CHEN Hai-long, YANG Xue-feng, WANG Shou-ren, LU Chong-yang, WU Yuan-bo
School of Mechanical Engineering, University of Jinan, Jinan 250022, China
全文: PDF(6141 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以普通酚醛树脂、硼改性酚醛树脂、三聚氰胺改性酚醛树脂为黏结剂,以陶瓷纤维为增强纤维,制备了3种酚醛树脂陶瓷摩擦材料。对其冲击韧性和硬度进行实验测试,采用摩擦磨损试验机考察其摩擦磨损性能,采用扫描电子显微镜(SEM)和X射线能谱仪分析其磨损表面形貌及其成分,并探讨其磨损机制。结果表明:硼改性酚醛树脂黏结剂能够提高摩擦材料的硬度,三聚氰胺改性酚醛树脂黏结剂能够提高摩擦材料的冲击韧性,降低摩擦材料硬度;在摩擦过程中三聚氰胺改性酚醛树脂在高温下炭化,在摩擦材料表面形成一层致密的摩擦层,摩擦层的存在使摩擦材料的摩擦因数相对比较稳定,降低了摩擦材料的磨损率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海龙
杨学锋
王守仁
鹿重阳
吴元博
关键词 酚醛树脂摩擦材料摩擦磨损力学性能刹车片    
Abstract:Three kinds of phenolic resin ceramic brake pads were prepared with phenolic resin, boron modified phenolic resin, melamine modified phenolic resin as binder, and ceramic fiber as reinforcing fiber. The impact toughness and hardness of the material were tested. The friction and wear properties were investigated by friction and wear tester. The worn surface morphology and its composition were analyzed by scanning electron microscope (SEM) and X-ray energy spectrometer, and the wear mechanism was also discussed. The experimental results show that boron modified phenolic resin binder can improve the hardness of friction materials, melamine modified phenolic resin can improve the impact toughness of materials, reducing material hardness; in the friction process, melamine modified phenolic resin carbonized at high temperature, forming a dense layer of friction on the surface of friction material. The existence of friction layer makes the friction coefficient of the friction material become relatively stable, and reduces the wear rate of the friction material.
Key wordsphenolic resin    friction material    friction and wear    mechanical property    brake pad
收稿日期: 2018-01-10      出版日期: 2019-06-17
中图分类号:  TG113  
通讯作者: 杨学锋(1977-),男,教授,博士,研究方向为切削刀具的磨损,联系地址:山东省济南市南辛庄西路336号济南大学机械工程学院A40(250022),E-mail:me_yangxf@ujn.edu.cn     E-mail: me_yangxf@ujn.edu.cn
引用本文:   
陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
CHEN Hai-long, YANG Xue-feng, WANG Shou-ren, LU Chong-yang, WU Yuan-bo. Tribological properties of modified phenolic resin ceramic friction materials. Journal of Materials Engineering, 2019, 47(6): 108-113.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000038      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/108
[1] MALACHOVA K,KUKUTSCHOVA J,RYBKOVA Z,et al.Toxicity and mutagenicity of low-metallic automotive brake pad materials[J].Ecotoxicology and Environmental Safety,2016,131:37-44.
[2] LANGH N,RABENSTEIN M, ROSENLÖCHER J,et al.Full-ceramic brake systems for high performance friction applications[J].Journal of the European Ceramic Society,2016,36(15):3823-3832.
[3] BIAN G,WU H.Friction and surface fracture of a silicon carbide ceramic brake disc tested against a steel pad[J].Journal of the European Ceramic Society,2015,35(14):3797-3807.
[4] STADLER Z,KRNEL K,KOVA J,et al.Tribochemical reactions on sliding surface of the sintered metallic brake linings against SiC ceramic brake disk[J].Wear,2012,292/293:232-238.
[5] 杨阳,刘伯威,熊翔.一种新型陶瓷基汽车刹车片摩擦磨损性能的研究[J].粉末冶金技术,2010,28(5):336-340. YANG Y,LIU B W,XIONG X.Study on friction and wear properties of a new ceramic-based automobile brake pad[J].Powder Metallurgy Technology,2010,28(5):336-340.
[6] 刘玲,王发辉.增强纤维对陶瓷基摩擦材料摩擦磨损性能的影响[J].摩擦学学报,2012,32(1):27-33. LIU L,WANG F H.Effect of reinforced fibers on friction and wear properties of ceramic-based friction materials[J].Journal of Tribology,2012,32(1):27-33.
[7] SEKUNOWO O I,DUROWAYE S I,LAWAL G I.Synthesis and characterisation of iron millscale particles reinforced ceramic matrix composite[J].Journal of King Saud University-Engineering Sciences,2019,31(1):78-85.
[8] 李长虹,冯雨,何林,等.纳米粒子对丁腈改性酚醛树脂摩擦磨损性能的影响[J].高分子材料科学与工程,2009,25(2):59-61. LI C H,FENG Y,HE L,et al.Effect of nanoparticles on friction and wear properties of phenolic resin modified by nitrile-butadiene[J].Science and Engineering of Polymer Materials,2009,25(2):59-61.
[9] LAGEL M C,HAI L,PIZZI A,et al. Automotive brake pads made with a bioresin matrix[J].Industrial Crops and Products,2016,85(1):372-381.
[10] 彭金涛,任天斌.碳纤维增强树脂基复合材料的最新应用现状[J].中国胶粘剂,2014,23(8):48-52. PENG J T,REN T B.The latest application of carbon fiber reinforced resin matrix composites[J].China Adhesives,2014,23(8):48-52.
[11] CAI P, WANG Y M, WANG T M. Effect of resins on thermal, mechanical and tribological properties of friction materials[J].Tribology International,2015,87:1-10.
[12] GURUNATH P V,BIJWE J. Friction and wear studies on brake-pad materials based on newly developed resin[J].Wear,2007,263:1212-1219.
[13] CONG P,WANG H,WU X,et al.Braking performance of an organic brake pad based on a chemically modified phenolic resin binder[J].J Macromol Sci,2012,49(6):518-527.
[14] KIM Y C, CHO M H, KIM S J,et al.The effect of phenolic resin,potassium titanate, and CNSL on the tribological properties of brake friction materials[J].Wear,2008,264(3/4):204-210.
[15] MUTLU I,ELDOGAN O,FINDIK F.Tribological properties of some phenolic composites suggested for automotive brakes[J].Tribology International,2006,39(4):317-325.
[16] 董景隆.改性酚醛树脂/碳纤维复合材料的研究[D].长春:长春工业大学,2016. DONG J L.The study of phenol resin modification and the carbon fiber composites[D].Changchun:Changchun University of Technology,2016.
[17] 陈孝飞,李树杰,闫联生,等.硼改性酚醛树脂的固化及裂解[J].复合材料学报,2011,25(5):89-95. CHEN X F,LI S J,YAN L S,et al.Curing and pyrolysis of boron-modified phenolic resin[J].Acta Materiae Compositae Sinica,2011,25(5):89-95.
[18] 易新龙,冯安妮,邵文尧,等.硼改性酚醛树脂的合成及其模塑料力学性能研究[J].材料导报,2015,29(8):381-384. YI X L,FENG A N,SHAO W R,et al. Synthesis of boron modified phenolic resin and the mechanic performance of its molding plastics[J].Materials Review,2015,29(8):381-384.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[15] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn