Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (9): 84-92    DOI: 10.11868/j.issn.1001-4381.2018.000057
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响
赵梓钧1, 杨新岐1,*(), 李胜利1, 李冬晓2
1 天津大学 材料科学与工程学院, 天津 300354
2 北京卫星制造厂, 北京 100080
Influence of tool shape and process on formation and defects of friction stir additive manufactured build
Zi-jun ZHAO1, Xin-qi YANG1,*(), Sheng-li LI1, Dong-xiao LI2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2 Beijing Spacecraft Factory, Beijing 100080, China
全文: PDF(21008 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用2mm厚的2195-T8铝锂合金作为增材板条,利用5种不同形状的搅拌工具进行搅拌摩擦增材工艺实验。利用金相观察和硬度测试的分析方法,重点探讨搅拌工具形状与工艺过程对增材成形、界面缺陷及硬度分布的影响。结果表明:圆柱状和三角平面圆台状搅拌针下增材界面上下材料无明显混合,偏心圆柱状和三凹圆弧槽状搅拌针有利于增材界面上下材料混合及减小界面钩状缺陷;增材前进侧界面形成致密无缺陷冶金连接,而后退侧界面材料混合不充分,钩状缺陷易伸入焊核区,且弱连接缺陷起源于此。四层增材中,相邻两层焊接方向相反的增材工艺使除顶层增材外其他增材两侧钩状缺陷向焊核区外侧弯曲,弱连接缺陷得到改善;顶层增材后退侧钩状缺陷伸入焊核区。增材焊核区有明显软化现象,但不同增材工艺下焊核区硬度分布均匀,表明搅拌摩擦增材制造可获得性能均匀的增材;相比于单道焊接工艺,来回双道焊接工艺使单层增材焊核区进一步软化;四层增材中,越靠近顶部的增材,其焊核区平均硬度越大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵梓钧
杨新岐
李胜利
李冬晓
关键词 铝锂合金搅拌摩擦增材制造搅拌工具界面缺陷增材成形    
Abstract

The friction stir additive manufacturing (FSAM) experiment was conducted with 2mm thick sheets of 2195-T8 Al-Li alloy by using five tools with various shapes. The influence of stir tool shape and additive process on the formation, the interface defects and the hardness distribution of friction stir additive manufactured build was mainly investigated by metallographic observation and hardness testing. The results show that there is no obvious mixing of the materials across the interface of the builds manufactured by the cylindrical pin and the conical pin with three flats. However, the TrivexTM pin and the pin with three concave arc grooves are good for mixing of the materials across the interface and reducing hooking defects. Dense and defect free metallurgical connection occurs at the interface on the advancing side of the nugget zone. However, the materials across the interface on the retreating side are not sufficiently mixed, hence the hooking defect on the retreating side is easy to extend into the nugget zone, and the weak-bonding defect is originated from the hooking defect on the retreating side. For the four-layer build, except for the top layer, the welding method that the welding directions of two adjacent layers are opposite can make the hooking defects on both sides of the other layers bend to the outside of the nugget zone and improve the weak-bonding defects. The hooking defect on the retreating side of the top layer extends into the nugget zone. There is an obvious softening phenomenon in the nugget zone of the builds. The distributions of the hardness of the nugget zones of the builds manufactured by different welding processes are uniform, which shows that the build with uniform properties can be obtained by friction stir additive manufacturing. Compared with the single pass welding method, the back and forth double passes welding method further softens the material of the nugget zone of the one-layer build. For the four-layer build, the closer the layer is to the top, the higher the average hardness of the nugget zone is.

Key wordsAl-Li alloy    friction stir additive manufacturing    stir tool    interface defect    additive formation
收稿日期: 2018-01-14      出版日期: 2019-09-18
中图分类号:  TG453+.9  
基金资助:国家自然科学基金资助项目(51775371)
通讯作者: 杨新岐     E-mail: xqyang@tju.edu.cn
作者简介: 杨新岐(1962-), 男, 教授, 博士, 研究方向:材料加工工程、焊接结构疲劳断裂及完整性评定、固相摩擦焊接与加工技术及材料加工过程数值模拟, 联系地址:天津市津南区海河教育园区天津大学材料科学与工程学院(300354), E-mail:xqyang@tju.edu.cn
引用本文:   
赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
Zi-jun ZHAO, Xin-qi YANG, Sheng-li LI, Dong-xiao LI. Influence of tool shape and process on formation and defects of friction stir additive manufactured build. Journal of Materials Engineering, 2019, 47(9): 84-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000057      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/84
Fig.1  搅拌摩擦增材实验示意图
(a)单道单层;(b)双道单层;(c)四层
Cu Li Ag Mg Fe Zr Al
3.99 1.09 0.42 0.38 0.17 0.1 Bal
Table 1  2195-T8铝锂合金的化学成分(质量分数/%)
Mg Si Cu Fe Mn Zn Ti Al
0.92 0.68 0.43 0.33 0.013 0.01 0.01 Bal
Table 2  6061-T6铝合金的化学成分(质量分数/%)
Tool description Schematic diagramof tool Macro cross sectionof the build
T1:TrivexTM pin
T2:conical pin with three flats
T3:cylindrical pinwith three concave arc grooves
T4:counter conical pin with three concave arc grooves
T5:cylindrical pin
Table 3  工具形状及其作用下的单层增材宏观形貌
Fig.2  不同工具下增材焊核区前进侧的界面成形
(a)T1;(b)T2;(c)T3;(d)T4;(e)T5
Fig.3  T3工具下增材的缺陷分布
(a)A区;(b)B区;(c),(d)C区;(e)D区
Fig.4  T4工具下增材的缺陷分布
(a)A区;(b)B区;(c),(d)C区;(e)D区
Fig.5  增材塑化材料流动示意图
Fig.6  双道增材成形
(a)增材宏观形貌;(b)A区;(c)B区
Fig.7  四层增材成形
(a)增材宏观形貌;(b)A区;(c)B区;(d)C区;(e)D区
Fig.8  搅拌摩擦增材的硬度分布
(a)不同工具下增材;(b)单、双道增材;(c)四层增材
Fig.9  单(a)、双道(b)增材焊核区微观组织
1 HERZOG D , SEYDA V , WYCISK E , et al. Additive manufactu-ring of metals[J]. Acta Materialia, 2016, 117, 371- 392.
doi: 10.1016/j.actamat.2016.07.019
2 李鹏, 焦飞飞, 刘郢, 等. 金属超声波增材制造技术的发展[J]. 航空制造技术, 2016, 59 (12): 49- 55.
2 LI P , JIAO F F , LIU Y , et al. Development of metal ultrasonic additive manufacturing technique[J]. Aeronautical Manufacturing Technology, 2016, 59 (12): 49- 55.
3 LOEBER L, BIAMINO S, ACKELID U, et al.Comparison of selective laser and electron beam melted titanium aluminides[C]//2011 Annual International Solid Freeform Fabrication Symposium.Austin, Texas, USA: BOURELL D L, 2011: 547-556.
4 BRANDL E , HECKENBERGER U , HOLZINGER V , et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM):microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34, 159- 169.
5 GONG H, RAFI K, STARR T, et al.Effect of defects on fatigue tests of as-built Ti-6Al-4V parts fabricated by selective laser melting[C]//2012 Annual International Solid Freeform Fabric-ation Symposium.Austin, Texas, USA: BOURELL D L, 2012: 499-506.
6 DEHOFF R R , BABU S S . Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing[J]. Acta Materialia, 2010, 58 (13): 4305- 4315.
doi: 10.1016/j.actamat.2010.03.006
7 PALANIVEL S , SIDHAR H , MISHRA R S . Friction stir additive manufacturing:route to high structural performance[J]. JOM, 2015, 67 (3): 616- 621.
doi: 10.1007/s11837-014-1271-x
8 PALANIVEL S , NELATURU P , GLASS B , et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design, 2015, 65, 934- 952.
9 MAO Y , KE L , HUANG C , et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2016, 83 (9/12): 1637- 1647.
10 何斌, 黄春平, 张海军, 等. 搭接量对LY12铝合金搅拌摩擦增材制造成形的影响[J]. 南昌航空大学学报(自然科学版), 2014, 28 (3): 78- 82.
doi: 10.3969/j.issn.1001-4926.2014.03.013
10 HE B , HUANG C P , ZHANG H J , et al. Influence of amount of overlap in friction stir additive manufacturing of LY12 aluminum alloy[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2014, 28 (3): 78- 82.
doi: 10.3969/j.issn.1001-4926.2014.03.013
11 王忻凯, 邢丽, 徐卫平, 等. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43 (5): 8- 12.
11 WANG X K , XING L , XU W P , et al. Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (5): 8- 12.
12 COLEGROVE P A , SHERCLIFF H R . Modelling and develo-pment of the TrivexTM friction stir welding tool[J]. Nuclear Instruments & Methods in Physics Research, 2003, 600 (1): 207- 209.
13 王大勇, 冯吉才, 王攀峰. 搅拌摩擦焊用搅拌头研究现状与发展趋势[J]. 焊接, 2004, (6): 6- 10.
doi: 10.3969/j.issn.1001-1382.2004.06.002
13 WANG D Y , FENG J C , WANG P F . Research status and trend of rotational tool used for friction stir welding[J]. Welding & Joining, 2004, (6): 6- 10.
doi: 10.3969/j.issn.1001-1382.2004.06.002
14 THOMAS W M , JOHNSON K I , WIESNER C S . Friction stir welding-recent developments in tool and process technologies[J]. Advanced Engineering Materials, 2003, 5 (7): 485- 490.
doi: 10.1002/adem.200300355
15 郭晓娟, 李光, 李丛卿, 等. 搅拌摩擦搭接焊界面成形机制及影响因素[J]. 航空制造技术, 2009, (12): 62- 65.
doi: 10.3969/j.issn.1671-833X.2009.12.010
15 GUO X J , LI G , LI C Q , et al. Joint interface forming and influential factor of friction stir overlap welding[J]. Aeronautical Manufacturing Technology, 2009, (12): 62- 65.
doi: 10.3969/j.issn.1671-833X.2009.12.010
[1] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[2] 石磊, 戴翔, 武传松, 傅莉. 2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究[J]. 材料工程, 2021, 49(5): 122-129.
[3] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[4] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[5] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[6] 叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
[7] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[8] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
[9] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[10] 崔丽, 李晓延, 贺定勇, 陈俐, 巩水利. Nd:YAG激光焊接对铝锂合金组织和织构的影响[J]. 材料工程, 2012, 0(5): 6-9.
[11] 许飞, 陈俐, 巩水利, 杨璟, 赵晓明, 何恩光. 铝锂合金YAG-MIG复合焊缝成形特征及性能研究[J]. 材料工程, 2011, 0(10): 28-32,37.
[12] 李小飞, 李晓红, 熊华平, 李艳. 铝锂合金自动钨极氩弧焊接工艺研究[J]. 材料工程, 2008, 0(3): 13-17.
[13] 李红英, 孙远, 王晓峰, 唐宜, 曾再得, 王法云, 郑子樵. 时效时间对一种新型Al-Cu-Li系合金显微组织和力学性能的影响[J]. 材料工程, 2008, 0(12): 41-45.
[14] 李红英, 欧玲, 郑子樵. 2195铝锂合金的各向异性研究[J]. 材料工程, 2005, 0(10): 31-34.
[15] 王大勇, 冯吉才, 王攀峰. 柱形光头搅拌针搅拌摩擦焊接铝锂合金接头组织及力学性能[J]. 材料工程, 2004, 0(3): 3-6,10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn