Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (6): 94-100    DOI: 10.11868/j.issn.1001-4381.2018.000082
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响
王桂芳, 刘忠侠, 张国鹏()
郑州大学 物理工程学院 材料物理教育部重点实验室, 郑州 450052
Effect of milling time on microstructure and mechanical properties of TiC-CoCrFeNi composites prepared by hot pressing sintering
Gui-fang WANG, Zhong-xia LIU, Guo-peng ZHANG()
The Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
全文: PDF(7611 KB)   HTML ( 14 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用机械合金化-热压烧结法,制备TiC-CoCrFeNi复合材料,研究球磨时间对材料微观组织及力学性能的影响。结果表明:Co,Cr,Fe和Ni粉体在球磨10h后形成fcc结构的单相固溶体。经1200℃/1h热压烧结后,烧结体中生成TiC和Cr7C3结构的碳化物,并弥散分布于CoCrFeNi固溶体中。球磨时间显著改变了烧结体中碳化物的数量和尺寸,进而影响材料的力学性能。在球磨10h时,烧结体中纳米级TiC相急剧增多,此时复合材料的硬度(671HV)和屈服强度(1440MPa)达到最大值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王桂芳
刘忠侠
张国鹏
关键词 机械合金化球磨高熵合金复合材料    
Abstract

TiC-CoCrFeNi composite was fabricated by mechanical alloying and consequently vacuum hot pressing sintering, and the effects of milling time on the microstructure and mechanical properties of the composite was investigated. The results show that a single-phase solid solution with fcc structure is obtained after milled for 10h of Co, Cr, Fe and Ni powders. TiC and Cr7C3 structured carbides are formed and dispersed in the CoCrFeNi solid solution after hot pressing sintered at 1200℃ for 1h. Milling time has a significant effect on the size and amount of TiC and Cr7C3 structured carbides, which can affect the mechanical properties of the composite. When the milling time reaches 10h, the hardness and yield strength of the composite reach the maximum values of 671HV and 1440MPa, respectively, which is probably attributed to the dramatically increasing of nano-sized TiC in sintered bodies.

Key wordsmechanical alloying    ball-milling    high entropy alloy    composite
收稿日期: 2018-01-19      出版日期: 2019-06-17
中图分类号:  TG146  
基金资助:河南省高等学校重点科研项目(16A140037)
通讯作者: 张国鹏     E-mail: gpzhang@zzu.edu.cn
作者简介: 张国鹏(1987-), 男, 博士, 主要从事金属陶筑复合材料方面的研究工作, 联系地址:河南省郑州市二七区大学北路75号郑州大学南校区材料物理教育部重点实验室, E-mail:gpzhang@zzu.edu.cn
引用本文:   
王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
Gui-fang WANG, Zhong-xia LIU, Guo-peng ZHANG. Effect of milling time on microstructure and mechanical properties of TiC-CoCrFeNi composites prepared by hot pressing sintering. Journal of Materials Engineering, 2019, 47(6): 94-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000082      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/94
Element Melting point/℃ Density/
(g·cm-3)
Atomic radius/pm Crystal structure
Co 1495 8.9 125 hcp
Cr 1907 7.14 128 bcc
Fe 1538 7.87 126 bcc
Ni 1455 8.91 124 fcc
Ti 1668 4.51 147 hcp
C 3550 2.26 77 hex
Table 1  TiC-CoCrFeNi中各元素的熔点、密度、原子尺寸和晶体结构
Fig.1  不同球磨时间下TiC-CoCrFeNi复合材料粉体XRD图谱
Fig.2  不同球磨时间下CoCrFeNi粉体的形貌图  (a)0h;(b)2h;(c)6h;(d)10h;(e)22h;(f)46h
Fig.3  不同球磨时间下TiC-CoCrFeNi复合材料烧结体的XRD图谱
Fig.4  球磨时间对TiC-CoCrFeNi经1200℃/1h烧结后微观组织的影响  (a)2h;(b)6h;(c)10h;(d)22h;(e)46h
PhaseAtom fraction/%
Co Cr Fe Ni Ti C
A 28.65 10.63 27.42 29.48 3.82 -
B 17.14 6.95 18.19 17.38 25.32 15.03
C 4.79 36.80 7.40 1.71 0.59 48.72
Table 2  TiC-CoCrFeNi复合材料烧结体中不同相的EDS结果
Fig.5  TiC-CoCrFeNi复合材料球磨10h烧结体的TEM明场照片和相应的电子衍射照片  (a)TEM照片;(b)沿[${\rm{\bar 1}}$11]TiC方向;(c)沿[010]Cr7C3方向;(d)沿[011]方向CoCrFeNi
Fig.6  球磨时间对TiC-CoCrFeNi复合材料硬度的影响
Fig.7  不同球磨时间下TiC-CoCrFeNi复合材料试样的压缩应力-应变曲线
Time/h σy/MPa σb/MPa ε/%
2 1270 1720 19.54
6 1230 1720 17.36
10 1440 1450 3.74
22 820 1510 19.32
46 735 1170 16.87
Table 3  TiC-CoCrFeNi复合材料的压缩力学性能
1 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/(ISSN)1527-2648
2 HSU Y J , CHIANG W C , WU J K . Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry & Physics, 2005, 92 (1): 112- 117.
3 梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展[J]. 材料工程, 2009, (12): 75- 79.
doi: 10.3969/j.issn.1001-4381.2009.12.018
3 LIANG X B , WEI M , CHENG J B , et al. Reaserch progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engineering, 2009, (12): 75- 79.
doi: 10.3969/j.issn.1001-4381.2009.12.018
4 谢红波, 刘贵仲, 郭景杰, 等. Al元素对AlxFeCrCoCuV高熵合金组织及摩擦性能的影响[J]. 材料工程, 2016, 44 (4): 65- 70.
4 XIE H B , LIU G Z , GUO J J , et al. Effects of Al addition on microstructure and wear properties of AlxFeCrCoCuV high-entropy alloys[J]. Journal of Materials Engineering, 2016, 44 (4): 65- 70.
5 任明星, 李邦盛. CrFeCoNiCu多主元高熵合金的相分析[J]. 材料工程, 2012, (1): 9- 12.
5 REN M X , LI B S . Phase analysis of CrFeCoNiCu high-entropy alloy[J]. Journal of Materials Engineering, 2012, (1): 9- 12.
6 WANG R , ZHANG K , DAVIES C , et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCr-FeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys & Compounds, 2017, 694, 971- 981.
7 刘恕骞, 黄维刚. AlCoCrNiSix高熵合金微观组织结构与力学性能[J]. 材料工程, 2012, (1): 5- 8.
7 LIU S Q , HUANG W G . Microstructure and mechanical performance of AlCoCrNiSix high-entropy alloys[J]. Journal of Materials Engineering, 2012, (1): 5- 8.
8 TAN X R , ZHANG G P , ZHI Q , et al. Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high-entropy alloy[J]. Materials & Design, 2016, 109, 27- 36.
9 MA S G , ZHANG Y . Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science & Engineering:A, 2012, 532 (1): 480- 486.
10 SRIHARITHA R , MURTY B S , KOTTADA R S . Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys[J]. Journal of Alloys & Compounds, 2014, 583 (2): 419- 426.
11 YAO M J , PRADEEP K G , TASAN C C , et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014, 72/73 (1): 5- 8.
12 FU Z , CHEN W , WEN H , et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy[J]. Acta Materialia, 2016, 107, 59- 71.
doi: 10.1016/j.actamat.2016.01.050
13 YANG T , XIA S , LIU S , et al. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy[J]. Materials Science & Engineering:A, 2015, 648, 15- 22.
14 VAIDYA M , TRUBEL S , MURTY B S , et al. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys[J]. Acta Materialia, 2018, 146, 211- 224.
doi: 10.1016/j.actamat.2017.12.052
15 LI J , JIA W , WANG J , et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method[J]. Materials & Design, 2016, 95, 183- 187.
16 HUO W , ZHOU H , FANG F , et al. Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys[J]. Materials Science & Engineering:A, 2017, 689, 366- 369.
17 SATHIARAJ G D , AHMED M Z , BHATTACHARJEE P P . Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys[J]. Journal of Alloys & Compounds, 2016, 664, 109- 119.
18 ABHAYA S , RAJARAMAN R , KALAVATHI S , et al. Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi, using slow positron beam[J]. Journal of Alloys & Compounds, 2016, 669, 117- 122.
19 SALISHCHEV G A , TIKHONOVSKY M A , SHAYSULTA-NOV D G , et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system[J]. Journal of Alloys & Compounds, 2014, 591 (5): 11- 21.
20 WANG J , GUO T , LI J , et al. Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy[J]. Materials Chemistry & Physics, 2018, 210, 192- 196.
21 HUO W Y , ZHOU H , FANG F , et al. Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys[J]. Journal of Alloys & Compounds, 2018, 735, 897- 904.
22 CHASE M W , DAVIES C A , DOWNEY J R , et al. Thermochemical tables forth edition[M]. New York, US: American Chemical Society and American Institute of Physics, 1998.
[1] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[4] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[5] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[6] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[7] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[8] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[9] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[10] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[11] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[14] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[15] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn