Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 94-100    DOI: 10.11868/j.issn.1001-4381.2018.000082
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响
王桂芳, 刘忠侠, 张国鹏
郑州大学 物理工程学院 材料物理教育部重点实验室, 郑州 450052
Effect of milling time on microstructure and mechanical properties of TiC-CoCrFeNi composites prepared by hot pressing sintering
WANG Gui-fang, LIU Zhong-xia, ZHANG Guo-peng
The Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
全文: PDF(7611 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用机械合金化-热压烧结法,制备TiC-CoCrFeNi复合材料,研究球磨时间对材料微观组织及力学性能的影响。结果表明:Co,Cr,Fe和Ni粉体在球磨10h后形成fcc结构的单相固溶体。经1200℃/1h热压烧结后,烧结体中生成TiC和Cr7C3结构的碳化物,并弥散分布于CoCrFeNi固溶体中。球磨时间显著改变了烧结体中碳化物的数量和尺寸,进而影响材料的力学性能。在球磨10h时,烧结体中纳米级TiC相急剧增多,此时复合材料的硬度(671HV)和屈服强度(1440MPa)达到最大值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王桂芳
刘忠侠
张国鹏
关键词 机械合金化球磨高熵合金复合材料    
Abstract:TiC-CoCrFeNi composite was fabricated by mechanical alloying and consequently vacuum hot pressing sintering, and the effects of milling time on the microstructure and mechanical properties of the composite was investigated. The results show that a single-phase solid solution with fcc structure is obtained after milled for 10h of Co, Cr, Fe and Ni powders. TiC and Cr7C3 structured carbides are formed and dispersed in the CoCrFeNi solid solution after hot pressing sintered at 1200℃ for 1h. Milling time has a significant effect on the size and amount of TiC and Cr7C3 structured carbides, which can affect the mechanical properties of the composite. When the milling time reaches 10h, the hardness and yield strength of the composite reach the maximum values of 671HV and 1440MPa, respectively, which is probably attributed to the dramatically increasing of nano-sized TiC in sintered bodies.
Key wordsmechanical alloying    ball-milling    high entropy alloy    composite
收稿日期: 2018-01-19      出版日期: 2019-06-17
中图分类号:  TG146  
通讯作者: 张国鹏(1987-),男,博士,主要从事金属陶筑复合材料方面的研究工作,联系地址:河南省郑州市二七区大学北路75号郑州大学南校区材料物理教育部重点实验室,E-mail:gpzhang@zzu.edu.cn     E-mail: gpzhang@zzu.edu.cn
引用本文:   
王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
WANG Gui-fang, LIU Zhong-xia, ZHANG Guo-peng. Effect of milling time on microstructure and mechanical properties of TiC-CoCrFeNi composites prepared by hot pressing sintering. Journal of Materials Engineering, 2019, 47(6): 94-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000082      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/94
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
[2] HSU Y J, CHIANG W C, WU J K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry & Physics, 2005, 92(1):112-117.
[3] 梁秀兵,魏敏,程江波,等. 高熵合金新材料的研究进展[J]. 材料工程,2009(12):75-79. LIANG X B, WEI M, CHENG J B, et al. Reaserch progress in advanced materials of high-entropy alloys[J]. Journal of Materials Engineering, 2009(12):75-79.
[4] 谢红波,刘贵仲,郭景杰,等. Al元素对AlxFeCrCoCuV高熵合金组织及摩擦性能的影响[J]. 材料工程,2016,44(4):65-70. XIE H B, LIU G Z, GUO J J, et al. Effects of Al addition on microstructure and wear properties of AlxFeCrCoCuV high-entropy alloys[J]. Journal of Materials Engineering, 2016, 44(4):65-70.
[5] 任明星,李邦盛. CrFeCoNiCu多主元高熵合金的相分析[J]. 材料工程,2012(1):9-12. REN M X, LI B S. Phase analysis of CrFeCoNiCu high-entropy alloy[J]. Journal of Materials Engineering, 2012(1):9-12.
[6] WANG R, ZHANG K, DAVIES C, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCr-FeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys & Compounds, 2017, 694:971-981.
[7] 刘恕骞,黄维刚. AlCoCrNiSix高熵合金微观组织结构与力学性能[J]. 材料工程,2012(1):5-8. LIU S Q, HUANG W G. Microstructure and mechanical performance of AlCoCrNiSix high-entropy alloys[J]. Journal of Materials Engineering, 2012(1):5-8.
[8] TAN X R, ZHANG G P, ZHI Q, et al. Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high-entropy alloy[J]. Materials & Design, 2016, 109:27-36.
[9] MA S G, ZHANG Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science & Engineering:A, 2012, 532(1):480-486.
[10] SRIHARITHA R, MURTY B S, KOTTADA R S. Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys[J]. Journal of Alloys & Compounds, 2014, 583(2):419-426.
[11] YAO M J, PRADEEP K G, TASAN C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014, 72/73(1):5-8.
[12] FU Z, CHEN W, WEN H, et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy[J]. Acta Materialia, 2016, 107:59-71.
[13] YANG T, XIA S, LIU S, et al. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy[J]. Materials Science & Engineering:A, 2015, 648:15-22.
[14] VAIDYA M, TRUBEL S, MURTY B S, et al. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys[J]. Acta Materialia, 2018, 146:211-224.
[15] LI J, JIA W, WANG J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method[J]. Materials & Design, 2016, 95:183-187.
[16] HUO W, ZHOU H, FANG F, et al. Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys[J]. Materials Science & Engineering:A, 2017, 689:366-369.
[17] SATHIARAJ G D, AHMED M Z, BHATTACHARJEE P P. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys[J]. Journal of Alloys & Compounds, 2016, 664:109-119.
[18] ABHAYA S, RAJARAMAN R, KALAVATHI S, et al. Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi, using slow positron beam[J]. Journal of Alloys & Compounds, 2016, 669:117-122.
[19] SALISHCHEV G A, TIKHONOVSKY M A, SHAYSULTA-NOV D G, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system[J]. Journal of Alloys & Compounds, 2014, 591(5):11-21.
[20] WANG J, GUO T, LI J, et al. Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy[J]. Materials Chemistry & Physics, 2018, 210:192-196.
[21] HUO W Y, ZHOU H, FANG F, et al. Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys[J]. Journal of Alloys & Compounds, 2018, 735:897-904.
[22] CHASE M W, DAVIES C A, DOWNEY J R, et al. Thermochemical tables forth edition[M]. New York,US:American Chemical Society and American Institute of Physics, 1998.
[1] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[2] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[3] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[4] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[5] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[6] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[7] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[8] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[9] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[12] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[13] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[14] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[15] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn