Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (12): 118-123    DOI: 10.11868/j.issn.1001-4381.2018.000101
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电纺Co掺杂碳纳米纤维的制备及其吸波性能
张飒(), 王建江, 赵芳, 刘嘉玮
陆军工程大学, 石家庄 050003
Preparation of Co doped carbon nanofibers composites synthesized by electrospinning and its microwave absorption properties
Sa ZHANG(), Jian-jiang WANG, Fang ZHAO, Jia-wei LIU
Army Engineering University, Shijiazhuang 050003, China
全文: PDF(3374 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用静电纺丝法和后续的热处理工艺制备不同浓度Co纳米粒子掺杂的碳纳米纤维。通过差热-热重(DSC-TGA)仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、矢量网络分析仪(VNA)对复合碳纳米纤维的热稳定性、物相、微观结构、电磁参数进行表征,并对其微波吸收性能进行研究。结果表明:当炭化温度为800℃时,复合纳米纤维结晶度适中,无定形碳部分转化为石墨相碳,CoAc2全部被炭化还原为面心立方结构的金属Co纳米粒子,且纤维形貌完整,有串珠状结构存在于纤维网络之间;掺杂后碳纤维电磁性能得到明显改善,当掺杂量为7%(质量分数),涂层厚度为1.5mm时,有效吸收带宽达到最大,为4.5GHz,相比于纯碳纳米纤维,吸波性能得到显著提升。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张飒
王建江
赵芳
刘嘉玮
关键词 静电纺丝碳纳米纤维金属Co纳米粒子串珠状结构吸波性能    
Abstract

Carbon nanofibers with various contents of Co nanoparticle were synthesized by a two step process of electrospinning and subsequent heat treatment. The thermal stability, phase composition, microstructure and electromagnetic characteristics of the carbon nanofibers were characterized by differential scanning calorimetry-thermogravimmetric analysis (DSC-TGA), X-ray diffraction(XRD), scanning electron microscope(SEM) and vector network analyzer(VNA), and the microwave absorption performance was studied.The results indicate that the crystallinity of composite nanofibers is moderate when the carbonization temperature is 800℃.The amorphous carbon is partially converted into graphite and CoAc2 completely reduces to face-centered cubic structured Co nanoparticle. The fiber is intact and beads-on-string structure exists in the fiber networks. The electromagnetic characteristics of the carbon nanofibers significantly improve by the doping of Co. The Carbon nanofibers containing 7%(mass fraction) as fillers with thickness of 1.5mm exhibit maximum effective absorption bandwidth of 4.5GHz, and it is obviously improved compared to pure carbon nanofibers.

Key wordselectrospinning    carbon nanofiber    Co nanoparticle    beads-on-string structure    microwave absorption property
收稿日期: 2018-01-22      出版日期: 2019-12-17
中图分类号:  TB34  
通讯作者: 张飒     E-mail: zhangsahe@126.com
作者简介: 张飒(1993-), 男, 助教, 硕士, 从事军用功能材料方面的研究工作, 联系地址:河北省石家庄市新华区和平西路97号陆军工程大学石家庄校区火炮工程系(050003), E-mail:zhangsahe@126.com
引用本文:   
张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
Sa ZHANG, Jian-jiang WANG, Fang ZHAO, Jia-wei LIU. Preparation of Co doped carbon nanofibers composites synthesized by electrospinning and its microwave absorption properties. Journal of Materials Engineering, 2019, 47(12): 118-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000101      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/118
Fig.1  预氧化纳米纤维的DSC-TGA曲线
Fig.2  不同Co含量的复合纳米纤维XRD谱图
Fig.3  复合纳米纤维的SEM图  (a)Co/C-3%;(b)Co/C-5%;(c)Co/C-7%;(d)无串珠纤维
Fig.4  Co/C复合纳米纤维电磁参数ε′(a), ε″(b), μ′(c), μ″(d)随频率的变化
Fig.5  Co/C复合纳米纤维的介电损耗角正切(a)和磁损耗角正切(b)
Fig.6  不同厚度Co/C复合纳米纤维吸波涂层的反射损耗曲线
(a)Co/C-3%;(b)Co/C-5%;(c)Co/C-7%;(d)无串珠纤维
1 LI M Q , HU Y M , FANG J H , et al. Current status and future trends of electromagnetic-wave absorbent with nano-structure[J]. Materials Review, 2002, 16 (9): 15- 17.
2 SUN G B , DONG B X , CAO M H , et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chemistry of Materials, 2011, 23, 1587- 1593.
doi: 10.1021/cm103441u
3 MURAKAMI R I , YAMAMOTO H , KIM C K , et al. Electromagnetic wave shielding effectiveness of carbon fiber sheet coated ferrite film by micowave-hydrothermal process[J]. International Journal of Modern Physics B, 2003, 17, 8- 9.
4 ZENG J , XU J C . Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation[J]. Journal of Alloys and Compounds, 2010, 493, L39- L41.
doi: 10.1016/j.jallcom.2009.12.192
5 WANG L , HE F , WAN Y Z . Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe-Co alloy by electroplating[J]. Journal of Alloys and Compounds, 2011, 509, 4726- 4730.
doi: 10.1016/j.jallcom.2011.01.119
6 LIU X G , GENG D Y , MENG H , et al. Microwave absorption properties of FCC-Co/Al2O3 and FCC-Co/Y2O3 nanocapsules[J]. Solid State Communications, 2009, 149, 64- 67.
doi: 10.1016/j.ssc.2008.10.015
7 LIN H Y , ZHU H , GUO H F , et al. Microwave-absorbing proper of Co-filled carbon nanotubes[J]. Materials Research Bulletin, 2008, 43, 2697- 2702.
doi: 10.1016/j.materresbull.2007.10.016
8 TABATABAIE F , FATHI M H , SAATCHI A . Effect of Mn-Co and Co-Ti substituted ions on doped strontium ferrites microwave absorption[J]. Journal of Alloys and Compounds, 2009, 474, 206- 209.
doi: 10.1016/j.jallcom.2008.06.083
9 张克力, 贾漫珂, 汤昊, 等. 乙酸钴热分解机理研究[J]. 武汉大学学报(理学版), 2002, 48 (4): 409- 412.
doi: 10.3321/j.issn:1671-8836.2002.04.006
9 ZHANG K L , JIA M K , TANG H , et al. The thermal decomposition mechanism of cobaltous acetate[J]. Journal of Wuhan University(Natural Science Edition), 2002, 48 (4): 409- 412.
doi: 10.3321/j.issn:1671-8836.2002.04.006
10 PENG J , CHEN N , HE R , et al. Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes:a facile and mild graphitization method[J]. Angewandte Chemie International Edition, 2017, 56 (7): 1751- 1755.
doi: 10.1002/anie.201609565
11 LI G M , ZHU B S , LIANG L P , et al. Core-shell Co3Fe7@C composite as efficient microwave absorbent[J]. Acta Physico-Chimica Sinica, 2017, 33 (8): 1715- 1720.
12 Mc CLURE J P , JIANG R Z , CHU D Y , et al. Oxygen electroreduction on Fe or Co-containing carbon fibers[J]. Carbon, 2014, 79, 457- 469.
doi: 10.1016/j.carbon.2014.08.005
13 PUNTES V F , KRISHAN K M , ALIVISATUS A P . Colloidal nanocrystal shape and size control:the case of cobalt[J]. Science, 2001, 291 (5511): 2115- 2121.
doi: 10.1126/science.1057553
14 高大伟, 王丽丽, 陆振乾, 等. 金属掺杂对碳纳米纤维结构及导电性能的研究[J]. 材料导报, 2015, 29 (22): 87- 90.
14 GAO D W , WANG L L , LU Z Q , et al. Study on the effects of metal-doping on the structure and conductivity of carbon nanofibers[J]. Materials Reports, 2015, 29 (22): 87- 90.
15 CAO M S , YANG J , SONG W L , et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied Materials & Interfaces, 2012, 4 (12): 6949- 6956.
16 向军, 张雄辉, 叶芹, 等. Fe-Ni/C复合纳米纤维的原位制备与微波吸收性能[J]. 高等学校化学学报, 2014, 35 (7): 1379- 1387.
16 XIANG J , ZHANG X H , YE Q , et al. Fe-Ni/C in-situ preparation and microwave absorbing properties of composite nano-fibers[J]. Chemical Journal of Chinese Universities, 2014, 35 (7): 1379- 1387.
17 王晓磊, 包秀坤, 关银燕, 等. C/Co核壳亚微米复合物的吸波性能[J]. 材料研究学报, 2017, 31 (4): 241- 247.
17 WANG X L , BAO X K , GUAN Y Y , et al. Microwave absorption properties of submicro-composites of core-shell C/Co[J]. Chinese Journal of Materials Research, 2017, 31 (4): 241- 247.
18 LIU J W , CHE R C , CHEN H J , et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells[J]. Small, 2012, 8 (8): 1214- 1221.
doi: 10.1002/smll.201102245
19 DING D H , ZHOU W C , ZHANG B . Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics[J]. Journal Materials Science, 2011, 46, 2709- 2714.
doi: 10.1007/s10853-010-5140-x
20 WANG B C , WEI J Q , YANG Y , et al. Investigation on peak frequency of the microwave absorption for carbonyliron/epoxy resin composite[J]. Journal of Magnetism and Magnetic Materials, 2011, 23 (8): 1101- 1103.
21 LI G , XIE T S , YANG S L , et al. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers[J]. The Journal of Physical Chemistry C, 2012, 116 (16): 9196- 9201.
doi: 10.1021/jp300050u
[1] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[2] 马国庆, 陈亮, 崔正明, 李维, 官建国. 溶解乳化法制备SBS包覆FeSiAl片状吸收剂的微波电磁性能[J]. 材料工程, 2022, 50(2): 111-117.
[3] 曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
[4] 章玲, 王雪, 李家强, 罗楚养, 张威, 张礼颖. 碳纳米纤维增强聚酰亚胺复合气凝胶的合成与性能[J]. 材料工程, 2022, 50(1): 125-131.
[5] 沈慧颖, 吕子豪, 庄粟裕, 曹秀明, 王清清. 静电纺CA/PpIX多孔纤维膜的制备及其光动力性能[J]. 材料工程, 2021, 49(5): 89-97.
[6] 孙莉莉, 吴南, 彭睿. 拉伸处理对碳纳米纤维/聚偏氟乙烯复合材料结晶行为和AC导电性能的影响[J]. 材料工程, 2020, 48(6): 106-111.
[7] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[8] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[9] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[10] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[11] 龚文正, 常保宁, 阮诗伦, 申长雨. 静电纺丝聚芳醚砜酮纤维膜穿刺强度研究[J]. 材料工程, 2019, 47(4): 32-38.
[12] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[13] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[14] 张雪霏, 周金堂, 姚正军, 蔡海硕, 魏波. CIP/GF/CF/EP吸波复合材料的制备及力学性能[J]. 材料工程, 2019, 47(10): 141-147.
[15] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn