Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 30-36    DOI: 10.11868/j.issn.1001-4381.2018.000106
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
单分散铁基Fe60Ni7.5Mo7.5P10C10B5金属玻璃球形粒子的制备及评价
董伟, 李文畅, 许富民, 韩阳, 张伟
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Fabrication and Evaluation of Mono-sized Fe-based Fe60Ni7.5Mo7.5P10C10B5 Metallic Glass Spherical Micro Particles
DONG Wei, LI Wen-chang, XU Fu-min, HAN Yang, ZHANG Wei
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(2787 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 铁基金属玻璃粒子因其特有的性能在微成型领域有着良好的应用前景,本研究利用脉冲微孔喷射法制备粒径可控的单分散Fe60Ni7.5Mo7.5P10C10B5金属玻璃粒子。通过OM,SEM,XRD及DSC等手段对得到的粒子进行检测。结果表明:该方法制备的金属玻璃粒子具有粒径均一、球形度高、热历史一致的优点。随着粒径的增加,粒子的微观结构从完全非晶相向晶体相转变。在本实验条件下,Ar气氛下制备得到完全非晶相的粒子粒径应小于285μm,而在He气氛得到的最大粒径为383μm粒子也依旧保持完全非晶相。通过理论模型对冷却速率进行计算,得到其临界冷却速率应大于1300K/s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董伟
李文畅
许富民
韩阳
张伟
关键词 脉冲微孔喷射法铁基金属玻璃单分散粒子冷却速率    
Abstract:Fe-based metallic glass particle has an excellent application prospect in micro-forming field due to their special properties. Mono-sized Fe60Ni7.5Mo7.5P10C10B5 metallic glass particles with controllable particle diameters were prepared by pulsated orifice ejection method (POEM). The analysis of these obtained particles was carried out by optical microscope(OM), scanning electron microscope(SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC). The results show that the metallic glass particles prepared by POEM have the advantages of uniform particle diameter, high sphericity and consistent thermal history. The microstructure of particles is transformed from fully amorphous phase to crystal phase with increasing particle diameters. In the experimental conditions of this paper, the critical diameter for obtaining fully amorphous phase should be less than 285μm in Ar atmosphere. However, the particle with the maximum diameter of 383μm in He atmosphere also maintain amorphous phase. The critical cooling rate calculated by the theoretical model should be over 1300K/s.
Key wordspulsated orifice ejection method    Fe-based metallic glass    mono-sized particle    cooling rate
收稿日期: 2018-01-25      出版日期: 2018-10-17
中图分类号:  TB34  
通讯作者: 董伟(1965-),男,副教授,博士生导师,现从事单分散微米级粒子制备与液滴沉积成型方向的研究,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学新三束实验室208(116024),E-mail:w-dong@dlut.edu.cn     E-mail: w-dong@dlut.edu.cn
引用本文:   
董伟, 李文畅, 许富民, 韩阳, 张伟. 单分散铁基Fe60Ni7.5Mo7.5P10C10B5金属玻璃球形粒子的制备及评价[J]. 材料工程, 2018, 46(10): 30-36.
DONG Wei, LI Wen-chang, XU Fu-min, HAN Yang, ZHANG Wei. Fabrication and Evaluation of Mono-sized Fe-based Fe60Ni7.5Mo7.5P10C10B5 Metallic Glass Spherical Micro Particles. Journal of Materials Engineering, 2018, 46(10): 30-36.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000106      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/30
[1] KUMAR G, TANG H X, SCHROERS J. Nanomoulding with amorphous metals[J]. Nature, 2009, 457(7231):868-872.
[2] ISHIDA M, TAKEDA H, WATANABE D, et al. Fillability and imprintability of high-strength Ni-based bulk metallic glass prepared by the precision die-casting technique[J]. Materials Transactions, 2005, 45(4):1239-1244.
[3] SAOTOME Y, HATORI T, ZHANG T, et al. Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state[J]. Materials Science & Engineering:A, 2001, 304(1):716-720.
[4] SAOTOME Y, IWAZAKI H. Superplastic backward microextrusion of microparts for micro-electro-mechanical systems[J]. Journal of Materials Processing Technology, 2001, 119(13):307-311.
[5] 王匀, 孙日文, 许桢英,等. 温挤压微成形系统及其数值模拟研究[J]. 材料工程, 2008(4):47-50. WANG Y, SUN R W, XU Z X, et al. Investigation into the system and numerical simulation of warm microextrusion J]. Journal of Materials Engineering, 2008(4):47-50.
[6] YODOSHI N, YAMADA R, KAWASAKI A, et al. Micro viscous flow processing of Fe-based metallic glassy particles[J]. Journal of Alloys & Compounds, 2014, 615:61-66.
[7] LI Y, JIA X, ZHANG W, et al. Effects of alloying elements on the thermal stability and corrosion resistance of an Fe-based metallic glass with low glass transition temperature[J]. Metallurgical & Materials Transactions A, 2014, 45(5):2393-2398.
[8] YOSHIDA K, BITO M, KAGEYAMA J, et al. Unusual high Bs for Fe-based amorphous powders produced by a gas-atomization technique[J]. Aip Advances, 2016, 6(5):1367-1371.
[9] 付一凡. 脉冲微孔喷射法均匀球形微米级粒子的制备及其影响因素研究[D]. 大连:大连理工大学, 2013. FU Y F. Fabrication and influencing factors of mono-sized spherical micro particles by pulsated orifice ejection method[D]. Dalian:Dalian University of Technology, 2013.
[10] DONG W, MASUDA S, TAKAGI K, et al. The development of mono-sized micro silicon particles for spherical solar cells by pulsated orifice ejection method[J]. Materials Science Forum, 2007, 534/536:149-152.
[11] 董伟,谭毅,李颖. 一种制备低熔点焊球的方法及装置:CN201010242074.8[P]. 2010-07-29. DONG W, TAN Y, LI Y. Method and device for preparing low melting point solder balls:CN201010242074.8[P]. 2010-07-29.
[12] 董伟, 康世薇, 魏宇婷,等. 脉冲微孔喷射技术及其在增材制造方面的应用[J]. 航空制造技术, 2016(12):16-22. DONG W, KANG S W, WEI Y T, et al. Pulsated orifice ejection method and its application in additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016(12):16-22.
[13] 董伟, 许富民, 康世薇,等. 一种制备单分散球形多孔β-TCP粒子的装置及方法:CN2014105926020.0[P]. 2014-10-28. DONG W, XU F M, KANG S W, et al. Device and method for preparing monodisperse spherical porous beta-TCP particles:CN2014105926020.0[P]. 2014-10-28.
[14] 董伟, 魏宇婷, 康世薇,等. 基于脉冲微孔喷射的液滴沉积成型[J]. 材料工程, 2016, 44(10):1-7. DONG W, WEI Y T, KANG S W, et al. Droplets deposition based on pulsated orifice ejection[J]. Journal of Materials Engineering, 2016, 44(10):1-7.
[15] 董伟, 李文畅, 康世薇,等. 脉冲微孔喷射法单分散球形微粒子的制备及其应用[J]. 材料工程, 2018, 46(2):142-151. DONG W, LI W C, KANG S W, et al. Fabrication and application of mono-sized spherical micro particles by pulsated orifice ejection method[J]. Journal of Materials Engineering, 2018, 46(2):142-151.
[16] YODOSHI N, YAMADA R, KAWASAKI A, et al. Evaluation of critical cooling rate of Fe76Si9B10P5 metallic glass by containerless solidification process[J]. Journal of Alloys & Compounds, 2015, 643:2-7.
[17] 李颖, 董伟, 三浦彩子,等. 球形铁基金属玻璃单分散粒子的制备及评价[J]. 无机材料学报, 2012, 27(8):849-854. LI Y, DONG W, MIURA A, et al. Fabrication and characterization of mono-sized spherical Fe-based metallic glass micro-particles[J]. Journal of Inorganic Materials, 2012, 27(8):849-854.
[1] 卢汉桥, 李玉龙, 余啸, 龙维峰, 江建锋. 回流冷却与等温时效过程中Sn-35Bi-1Ag/Ni-P/Cu焊点组织演变[J]. 材料工程, 2018, 46(6): 95-100.
[2] 宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
[3] 董伟, 李文畅, 康世薇, 许富民, 韩阳, 白兆丰. 脉冲微孔喷射法单分散球形微粒子的制备及其应用[J]. 材料工程, 2018, 46(2): 142-151.
[4] 鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
[5] 吕滨江, 彭建, 梁鹏, 王进. 冷却速率对Mg-4.4Zn-0.3Zr-0.4Y变形镁合金组织和性能的影响[J]. 材料工程, 2016, 44(9): 82-88.
[6] 董伟, 魏宇婷, 康世薇, 盖如坤, 许富民, 鲁栋. 基于脉冲微孔喷射的液滴沉积成型[J]. 材料工程, 2016, 44(10): 1-7.
[7] 彭宁琦, 唐广波, 刘正东. 奥氏体高温转变区二段冷却速率对铁素体相变的影响[J]. 材料工程, 2013, 0(9): 11-15.
[8] 彭建, 佘欢, 陶健全, 王小红, 潘复生. 冷却过程对AZ61镁合金凝固组织的影响[J]. 材料工程, 2012, 0(2): 58-61.
[9] 冯中学, 潘复生, 张喜燕, 汤爱涛, 付启涛. Mg17Al12相在AZ61镁合金半连续铸锭中的分布特性[J]. 材料工程, 2012, 0(1): 13-17.
[10] 曹杰, 阎军, 刘雅政, 章静, 孙维, 于同仁, 柳美玲. 高强度非调质冷镦钢热机轧制实验研究[J]. 材料工程, 2011, 0(11): 35-38.
[11] 饶雄, 李细江, 司鹏程, 汪卫华. 具有极大玻璃形成能力的多元大块非晶合金的研究进展[J]. 材料工程, 1999, 0(9): 3-6,12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn