Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 101-107    DOI: 10.11868/j.issn.1001-4381.2018.000134
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高离子传导纳米多孔β-Li3PS4固态电解质的湿化学法制备
李久勇1,2,3, 刘伟明2,3, 张晓锋2,3, 马一博2,3, 陈牧2,3, 邱然锋1, 颜悦2,3
1. 河南科技大学 材料科学与工程学院, 河南 洛阳 471000;
2. 中国航发北京航空材料研究院, 北京 100095;
3. 北京市先进运载系统结构透明件工程技术研究中心, 北京 100095
Preparation of nanoporous β-Li3PS4 solid electrolyte with high ionic conductivity by wet chemical method
LI Jiu-yong1,2,3, LIU Wei-ming2,3, ZHANG Xiao-feng2,3, MA Yi-bo2,3, CHEN Mu2,3, QIU Ran-feng1, YAN Yue2,3
1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China;
2. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
3. Beijing Engineering Technology Research Center of Structural Transparent Parts for Advanced Carrier System, Beijing 100095, China
全文: PDF(2558 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 利用湿化学法,并采取逐步加热脱除沉淀中四氢呋喃分子的方式,制备具有高离子电导率和低活化能的纳米多孔β-Li3PS4固态电解质。利用同步热分析、X射线衍射、扫描电镜、拉曼光谱、氮气吸脱附和交流阻抗测试等手段研究不同处理阶段产物的形貌、结构和物相组成,并测试分析β-Li3PS4固态电解质的电化学性能。结果表明:采用该方法制备的纳米多孔β-Li3PS4固态电解质比表面积为28.3m2·g-1,平均孔径约23nm,电化学测试表明该电解质在20℃下的离子电导率为1.84×10-4S·cm-1,活化能为0.343eV,电子电导率为1.3×10-8S·cm-1,具有优异的电化学稳定性,与金属锂负极也具有良好的兼容性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李久勇
刘伟明
张晓锋
马一博
陈牧
邱然锋
颜悦
关键词 湿化学法四氢呋喃固体电解质纳米多孔β-Li3PS4    
Abstract:The β-Li3PS4 solid electrolyte with high ionic conductivity and low activation energy was prepared by wet chemical method and stepwise heated to remove tetrahydrofuran molecules from the precipitate. The morphology, structure and phase composition of the products at different treatment stages were studied by means of simultaneous thermal analysis, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, N2 adsorption/desorption and AC impedance spectroscopy, and the electrochemical performance of β-Li3PS4 solid electrolyte were analyzed. The results show that the specific surface area of the nanoporous β-Li3PS4 solid electrolyte prepared by this method is 28.3m2·g-1 and its average pore diameter is about 23nm. Electrochemical characterization shows that the ionic conductivity of the electrolyte at 20℃ is 1.84×10-4 S·cm-1, the activation energy is 0.343eV, and the electronic conductivity is 1.3×10-8S·cm-1. In addition, the electrolyte has excellent electrochemical stability and good compatibility with the lithium anode.
Key wordswet chemical method    tetrahydrofuran    solid electrolyte    nanoporous β-Li3PS4
收稿日期: 2019-02-21      出版日期: 2019-09-18
中图分类号:  O611  
  O646  
  TQ174  
基金资助: 
通讯作者: 颜悦(1966-),男,研究员,博士,研究方向为透明件成型制造及功能镀膜,联系地址:北京市81信箱83分箱(100095),E-mail:yue.yan@biam.ac.cn     E-mail: yue.yan@biam.ac.cn
引用本文:   
李久勇, 刘伟明, 张晓锋, 马一博, 陈牧, 邱然锋, 颜悦. 高离子传导纳米多孔β-Li3PS4固态电解质的湿化学法制备[J]. 材料工程, 2019, 47(9): 101-107.
LI Jiu-yong, LIU Wei-ming, ZHANG Xiao-feng, MA Yi-bo, CHEN Mu, QIU Ran-feng, YAN Yue. Preparation of nanoporous β-Li3PS4 solid electrolyte with high ionic conductivity by wet chemical method. Journal of Materials Engineering, 2019, 47(9): 101-107.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000134      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/101
[1] TARASCON J M,ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367.
[2] 王一博,赵九蓬.3D打印柔性可穿戴锂离子电池[J].材料工程,2018,46(3):13-21. WANG Y B,ZHAO J P.3D printing of flexible electrodes towards wearable lithium ion battery[J].Journal of Materials Engine-ering,2018,46(3):13-21.
[3] 黄峰,周运鸿.锂离子电池电解质现状与发展[J].电池,2001,31(6):290-293. HUANG F,ZHOU Y H.Review of electrolytes for lithium-ion batteries[J].Battery,2001,31(6):290-293.
[4] CHEN S J,XIE D J,LIU G Z,et al.Sulfide solid electrolytes for all-solid-state lithium batteries:structure, conductivity, stability and application[J].Energy Storage Materials,2018,14:58-74.
[5] SEINO Y,OTA T,TAKADA K,et al.A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J].Energy & Environmental Science,2014,7(2):627-631.
[6] KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nature Materials,2011,10(9):682-686.
[7] MO Y,ONG S P,CEDER G.First principles study of the Li10GeP2S12 lithium super ionic conductor material[J].Chemistry of Materials,2012,24(1):15-17.
[8] MURAMATSU H,HAYASHI A,OHTOMO T,et al.Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J].Solid State Ionics,2011,182(1):116-119.
[9] HOMMA K,YONEMURA M,KOBAYASHI T,et al.Crystal structure and phase transitions of the lithium ionic conductor Li3PS4[J].Solid State Ionics,2011,182(1):53-58.
[10] DATHAR G K P,BALACHANDRAN J,KENT P R C,et al.Li-ion site disorder driven superionic conductivity in solid electr-olytes:a first-principles investigation of β-Li3PS4[J].Journal of Materials Chemistry A,2017,5(3):1153-1159.
[11] LIU Z,FU W,PAYZANT E A,et al.Anomalous high ionic conductivity of nanoporous β-Li3PS4[J].Journal of the American Chemical Society,2013,135(3):975-978.
[12] 潘亦真,李宇杰,陈一民,等.纳米多孔β-Li3PS4固体电解质的溶剂脱除法制备及性能[J]. 高等学校化学学报,2016,37(7):1232-1238. PAN Y Z,LI Y J,CHEN Y M,et al.Performance of nanoporous β-Li3PS4 prepared by solvent removing method[J].Chemical Journal of Chinese Universities,2016,37(7):1232-1238.
[13] CHEN Y,CAI L,LIU Z,et al.Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor[J].Applied Physics Letters,2015,107(1):013904.
[14] TACHEZ M,MALUGANI J P,MERCIER R,et al.Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4[J].Solid State Ionics,1984,14(3):181-185.
[15] CADIOLI B,GALLINELLA E,COULOMBEAU C,et al.Geom-etric structure and vibrational spectrum of tetrahydrofuran[J].The Journal of Physical Chemistry,1993,97(30):7844-7856.
[16] MAIER J.Nano-ionics:trivial and non-trivial size effects on ion conduction in solids[J].Zeitschrift für Physikalische Chemie,2003,217(4):415-436.
[17] MAIER J.Ionic transport in nano-sized systems[J].Solid State Ionics,2004,175(1/4):7-12.
[18] TERAGAWA S,ASO K,TADANAGA K,et al.Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries[J].Journal of Materials Chemistry A,2014,2(14):5095-5099.
[19] PHUC N H H,MORIKAWA K,TOTANI M,et al.Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking[J].Solid State Ionics,2016,285:2-5.
[20] PHUC N H H,TOTANI M,MORIKAWA K,et al.Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium[J].Solid State Ionics,2016,288:240-243.
[21] WANG H,HOOD Z D,XIA Y,et al.Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries[J].Journal of Materials Chemistry A,2016,4(21):8091-8096.
[22] MATSUDA A,MUTO H,PHUC N H H.Preparation of Li3PS4 solid electrolyte by liquid-phase shaking using organic solvents with carbonyl group as complex forming medium[J].Journal of the Japan Society of Powder and Powder Metallurgy,2016,63(11):976-980.
[23] PHUC N H H,MORIKAWA K,MITSUHIRO T,et al.Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries[J].Ionics,2017,23(8):2061-2067.
[24] LIM H D,LIM H K,XING X,et al.Solid electrolyte layers by solution deposition[J].Advanced Materials Interfaces,2018,5(8):1701328.
[25] HAN F,WESTOVER A S,YUE J,et al.High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J].Nature Energy,2019,4(3):1-10.
[26] RANGASAMY E,SAHU G,KEUM J K,et al.A high cond-uctivity oxide-sulfide composite lithium superionic conductor[J].Journal of Materials Chemistry A,2014,2(12):4111-4116.
[1] 朱承飞, 洪永飞, 薛金花, 黄攀, 吉光辉. 甘氨酸-硝酸盐燃烧法制备Beta-Al2O3固体电解质研究[J]. 材料工程, 2016, 44(8): 23-28.
[2] 孟波, 郝贵增, 秦敬灿, 谭小耀. La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ钙钛矿超细陶瓷粉体制备与催化性能研究[J]. 材料工程, 2014, 0(11): 50-54.
[3] 孟波, 谭小耀, 杨乃涛, 张宝砚. SrCe0.95Y0.05O(3-δ)固体电解质纳米陶瓷粉的低温燃烧合成和表征[J]. 材料工程, 2005, 0(6): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn