Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 60-69    DOI: 10.11868/j.issn.1001-4381.2018.000152
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测
陈亚军1, 刘辰辰1, 褚玉龙2, 宋肖肖1
1. 中国民航大学 中欧航空工程师学院, 天津 300300;
2. 中国航发上海商用航空发动机制造有限责任公司, 上海 201306
Multiaxial Low-cycle Fatigue Behavior and Life Prediction of 7075-T651 Aluminum Alloy Thin-walled Tubular Specimens
CHEN Ya-jun1, LIU Chen-chen1, CHU Yu-long2, SONG Xiao-xiao1
1. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
2. AECC Shanghai Commercial Aircraft Engine Manufacturing Co., Ltd., Shanghai 201306, China
全文: PDF(5946 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对航空铝合金多轴疲劳失效问题,对7075-T651铝合金薄壁管件进行不同加载条件下的拉扭复合疲劳实验。结果表明:随等效应力幅的降低,多轴疲劳寿命增加;等效应力恒定时,寿命随应力幅比的升高而增加;拉扭相位差对寿命影响较小。高应力幅下材料在轴向和扭向以软化为主,低应力幅下硬化和软化交替出现。宏观断口平台区随应力幅比的增加而逐渐减小,微观断口呈现管壁外侧的多裂纹源特征,扩展区可以观察到疲劳条带和二次裂纹,瞬断区出现混合型韧窝。提出基于Basquin准则的改进模型,得到较好的寿命预测效果,寿命预测值均位于两倍分散带内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚军
刘辰辰
褚玉龙
宋肖肖
关键词 7075-T651铝合金薄壁管件多轴低周疲劳失效机理寿命预测    
Abstract:Tension-torsion fatigue tests with different loading conditions were carried out on 7075-T651 aluminum alloy thin-walled tubular specimens aiming at studying multiaxial fatigue failure of aviation aluminum alloy. With the decrease of equivalent stress amplitude, the multiaxial fatigue life increases. Under the same equivalent stress, the multiaxial fatigue life is prolonged as the stress amplitude ratio augments while the tension-torsion phase has little effect on fatigue life. Under high stress amplitude, the materials are mainly softened in the axial and torsional directions while the hardening and softening alternately occur under the low stress amplitude. The platform area of macro fracture decreases with the increase of stress amplitude ratio. The microscopic fracture exhibits the multiple crack sources outside the wall of the tube. Fatigue striations and secondary cracks can be observed in the crack propagation region. Mixed mode dimples appear in the instantaneous fracture region. Based on Basquin's criteria, a modified model was proposed, and fine life prediction results were obtained, with the life prediction values in 2X scatter bands.
Key words7075-T651 aluminum alloy    thin-walled tubular specimen    multiaxial low-cycle fatigue    failure mechanism    life prediction
收稿日期: 2018-02-07      出版日期: 2018-10-17
中图分类号:  O346.2  
通讯作者: 陈亚军(1976-),男,副教授,博士,主要从事飞机结构材料失效分析方面的研究,联系地址:天津市中国民航大学(北院)中欧航空工程师学院(300300),E-mail:yjchen@cauc.edu.cn     E-mail: yjchen@cauc.edu.cn
引用本文:   
陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
CHEN Ya-jun, LIU Chen-chen, CHU Yu-long, SONG Xiao-xiao. Multiaxial Low-cycle Fatigue Behavior and Life Prediction of 7075-T651 Aluminum Alloy Thin-walled Tubular Specimens. Journal of Materials Engineering, 2018, 46(10): 60-69.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000152      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/60
[1] 中国航空材料编委会.中国航空材料手册:第3卷铝合金镁合金钛合金[M].北京:中国标准出版社,1989. Edit Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook:volume Ⅲ aluminum alloy magnesium alloy titanium[M]. Beijing:Standard Press of China, 1989.
[2] 杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2):76-80. YANG S J, DAI S L. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005, 19(2):76-80.
[3] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56(4):862-871.
[4] 丁智平, 陈吉平, 王腾飞,等.镍基单晶合金多轴非比例加载低周疲劳研究[J]. 力学学报, 2012,44(2):326-333. DING Z P, CHEN J P, WANG T F, et al. Study on low cycle fatigue of single crystal Ni-based superalloy under multiaxial non-proportional loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(2):326-333.
[5] 田玉杰, 尚德广, 陈宏, 等.单多轴变幅加载下TC21钛合金疲劳特性[J].航空材料学报, 2013,33(2):74-80. TIAN Y J, SHANG D G, CHEN H, et al. Fatigue properties of TC21 Ti-alloy under uniaxial and multiaxial cyclic variable amplitude loading[J]. Journal of Aeronautical Materials, 2013,33(2):74-80.
[6] LOK S K, PAUL J M, UPENDRANATH V. Prescience life of landing gear using multiaxial fatigue numerical analysis[J]. Procedia Engineering, 2014, 86:775-779.
[7] ESMAEILI F, CHAKHERLOU T N, ZEHSAZ M. Prediction of fatigue life in aircraft double lap bolted joints using several multiaxial fatigue criteria[J]. Materials & Design, 2014, 59(7):430-438.
[8] 陈亚军, 王先超, 王付胜,等. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8):68-75. CHEN Y J, WANG X C, WANG F S, et al. Fatigue behavior of 2A12 aluminum alloy under multiaxial loading[J]. Journal of Materials Engineering, 2017, 45(8):68-75.
[9] 陈亚军, 王先超, 王付胜,等. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9):136-142. CHEN Y J, WANG X C, WANG F S, et al. Multiaxial fatigue properties of 2A12 aluminum alloy under different stress amplitude ratio loadings[J]. Journal of Materials Engineering, 2017, 45(9):136-142.
[10] 赵凯, 何玉怀, 刘新灵,等. 拉弯扭比例加载下50CrVA弹簧钢的多轴疲劳寿命及损伤特征[J]. 材料工程, 2014(12):99-103. ZHAO K, HE Y H, LIU X L, et al. Multiaxial fatigue life and damage characteristics of 50CrVA spring steel under tension-bending-torsion proportional loading[J]. Journal of Materials Engineering, 2014(12):99-103.
[11] ZHANG J, SHI X, BAO R, et al. Tension-torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios[J]. International Journal of Fatigue, 2011, 33(8):1066-1074.
[12] ZHAO T, JIANG Y. Fatigue of 7075-T651 aluminum alloy[J]. International Journal of Fatigue, 2008, 30(5):834-849.
[13] 韩剑, 戴起勋, 赵玉涛,等. 7075-T651铝合金疲劳特性研究[J]. 航空材料学报, 2010, 30(4):92-96. HAN J, DAI Q X, ZHAO Y T, et al. Study of fatigue performance of 7075-T651 aluminum alloys[J]. Journal of Aeronautical Materials, 2010, 30(4):92-96.
[14] JO B, SHARIFIMEHR S, SHIM Y, et al. Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states[J]. International Journal of Fatigue, 2017, 100:454-465.
[15] 陈涛, 赵路远, 李慧,等. 应力控制下7075-T651铝合金的疲劳断裂行为[J]. 机械工程材料, 2017, 41(7):1-5. CHEN T, ZHAO L Y, LI H, et al. Fatigue fracture behavior of 7075-T651 aluminum alloy under stress control[J]. Materials for Mechanical Engineering, 2017, 41(7):1-5.
[16] 吴昊, 仲政. 金属材料多轴非比例低周疲劳寿命预测概述[J]. 力学季刊, 2016(2):201-213. WU H, ZHONG Z. Low cycle fatigue life prediction of metallic materials under multi-axial nonproportional loading:an overview[J]. Chinese Quarterly of Mechanics, 2016(2):201-213.
[17] 王英玉, 姚卫星. 多轴疲劳破坏准则现状及评估[J]. 材料工程, 2003(增刊1):37-41. WANG Y Y, YAO W X. Evaluation on the multiaxial fatigue criteria[J]. Journal of Materials Engineering, 2003(Suppl 1):37-41.
[18] WANG Y Y, YAO W X. Evaluation and comparison of several multiaxial fatigue criteria[J]. International Journal of Fatigue, 2004, 26(1):17-25.
[19] FATEMI A, SHAMSAEI N. Multiaxial fatigue:an overview and some approximation models for life estimation[J]. International Journal of Fatigue, 2011, 33(8):948-958.
[20] GOUGH H J. Crystalline structure in relation to failure of metals-especially fatigue[C]//Proceedings of the American Society for Testing and Materials 33, Part Ⅱ.Philadelphia,USA:American Society for Testing and Materials,1933:3-22.
[21] LEE S B. A criterion for fully reversed out-of-phase tors ion and bending[C]//MILLER K J, BROWN M W. Multiaxial Fatigue. San Francisco:ASTM STP, 1985:553-568.
[22] 崔云, 陈刚, 王磊,等. 多轴非比例载荷下镁合金AZ21的疲劳性能研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(3):283-289. CUI Y, CHEN G, WANG L, et al. Fatigue characteristics of Mg alloy AZ31 under multiaxial non-proportional loading[J]. Journal of Tianjin University (Science and Technology), 2017, 50(3):283-289.
[23] 陈旭, 许爽燕. 多轴低周疲劳研究现状[J]. 压力容器, 1997(3):58-61. CHEN X, XU S Y. Recent developments of multiaxial low cycle fatigue failure prediction[J]. Pressure Vessel, 1997(3):58-61.
[24] ELLYIN F, GOLOS K. Multiaxial fatigue damage criterion[J]. Journal of Engineering Materials & Technology, 1988, 110(1):63-68.
[25] FINDLEY W N. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending[J]. Journal of Engineering for Industry, 1959,81:301-306.
[26] BROWN M, MILLER K J. A theory for fatigue under multiaxial stress-strain conditions[J]. Institute of Mechanical Engineers, 1973, 187:745-756.
[27] SMITH R N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970,5(4):767-778.
[28] BENASCIUTTI D, SHERRATT F, CRISTOFORI A. Recent developments in frequency domain multi-axial fatigue analysis[J]. International Journal of Fatigue, 2016, 91:397-413.
[29] 朱正宇, 何国求, 陈成澍,等. 多轴非比例加载高周疲劳研究进展[J]. 同济大学学报(自然科学版), 2006, 34(9):1221-1225. ZHU Z Y, HE G Q, CHEN C S, et al. Recent advances of multiaxial high cycle fatigue under nonproportional loading[J]. Journal of Tongji University (Natural Science), 2006, 34(9):1221-1225.
[30] ZHANG J, SHI X, FEI B. High cycle fatigue and fracture mode analysis of 2A12-T4 aluminum alloy under out-of-phase axial-torsion constant amplitude loading[J]. International Journal of Fatigue, 2012, 38(6):144-154.
[31] WU Z R, HU X T, SONG Y D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading[J]. International Journal of Fatigue, 2014, 59(3):170-175.
[32] BASQUIN O H. The exponential law of endurance tests[C]//Proceedings of the American Society for Testing and Materials 10,Part Ⅱ. Bradford,USA:American Society for Testing and Materials,1910:625-630.
[33] BOLLER C, SEEGER T. Materials data for cyclic loading[M]. Holland:Elsevier, 1987.
[1] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[2] 陈亚军, 王先超, 王付胜, 周剑, 吴悦雷. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9): 136-142.
[3] 许军, 李会芳, 程从前, 曹铁山, 赵杰. 基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程, 2017, 45(8): 96-101.
[4] 陈亚军, 王先超, 王付胜, 刘波. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8): 68-75.
[5] 雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
[6] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[7] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[8] 江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
[9] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[10] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[11] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[12] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[13] 刘春慧, 程从前, 赵杰, 祝志超, 马海涛. MHZ常数在耐热钢持久性能预测中的应用[J]. 材料工程, 2012, 0(10): 12-16.
[14] 赵杰, 李东明, 方园园. Manson-Haferd常数的选择及在蠕变持久寿命预测中的应用[J]. 材料工程, 2009, 0(6): 30-34.
[15] 朴钟宇, 徐滨士, 王海斗, 濮春欢. 等离子喷涂铁基涂层的接触疲劳失效机理研究[J]. 材料工程, 2009, 0(11): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn