Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (5): 34-42    DOI: 10.11868/j.issn.1001-4381.2018.000180
  综述 本期目录 | 过刊浏览 | 高级检索 |
生物可降解高分子增韧聚乳酸的研究进展
魏泽昌, 蔡晨阳, 王兴, 付宇()
南京林业大学 材料科学与工程学院, 南京 210037
Research progress on toughening polylactic acid by renewable and biodegradable polymers
Ze-chang WEI, Chen-yang CAI, Xing WANG, Yu FU()
School of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
全文: PDF(2741 KB)   HTML ( 30 )  
输出: BibTeX | EndNote (RIS)      
摘要 

聚乳酸(PLA)是一种新型的生物基可再生生物降解材料,因具有高机械强度、易加工性、高熔点、可生物降解性和生物相容性等优点而得到广泛的关注。然而,其固有的脆性,即低断裂伸长率和断裂强度严重限制了它在实际中的应用,但也因此吸引了更广泛的深入研究。本文综述了以生物可降解高分子增韧聚乳酸的研究进展,重点阐述了生物基聚酯,生物基弹性体,植物基生物高分子,天然橡胶和植物油以及生物大分子增韧聚乳酸的最新研究发展概况,同时提出了在经过改善韧性之后,聚乳酸存在的冲击韧性弱以及低结晶速率和低热转变温度等问题,并分析了未来的发展方向和需要关注的主题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏泽昌
蔡晨阳
王兴
付宇
关键词 聚乳酸(PLA)断裂伸长率增韧生物可降解高分子生物相容性    
Abstract

Polylactic acid (PLA), a new type of bio-based renewable biodegradable material, has attracted more and more attention because of its advantages with high mechanical strength, ease of processing, high melting point, biodegradability and biocompatibility. However, its inherent brittl-eness, low elongation at break and breaking strength severely limit its practical application and has also led to more extensive and comprehensive research. This review summarizes the research progress of toughening polylactic acid with biodegradable macromolecules, especially focusing on the updated development on bio-based polyesters, bio-based elastomers, plant-based biopolymers, natural rubber and vegetable oils, and biomacromolecules, and meanwhile, the problem of weak impact toughness and low crystallization rate and low thermal transition temperature of polylactic acid after improving toughness was proposed, and the future direction of development and the subjects needed to focused on was finally predicted.

Key wordspolylactic acid(PLA)    elongation at break    toughening    biodegradable polymer    biocom-patibility
收稿日期: 2018-02-11      出版日期: 2019-05-17
中图分类号:  TB332  
通讯作者: 付宇     E-mail: fuyu@wsu.edu
作者简介: 付宇(1972-), 男, 教授, 博士, 研究方向:多功能性仿生材料和结构自增强材料及先进生物基高分子功能材料等, 联系地址:南京市玄武区龙蟠路159号南京林业大学材料科学与工程学院(210037), E-mail:fuyu@wsu.edu
引用本文:   
魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
Ze-chang WEI, Chen-yang CAI, Xing WANG, Yu FU. Research progress on toughening polylactic acid by renewable and biodegradable polymers. Journal of Materials Engineering, 2019, 47(5): 34-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000180      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/34
Fig.1  不同聚酯含量的试样拉伸断裂后的横截面扫描电子显微图[23]
(a)5%;(b)10%;(c)20%
1 YU L , DEAN K , LI L . Polymer blends and composites from re-newable resources[J]. Progress in Polymer Science, 2006, 31 (6): 576- 602.
doi: 10.1016/j.progpolymsci.2006.03.002
2 YAO K , TANG C . Controlled polymerization of next-generation renewable monomers and beyond[J]. Macromolecules, 2013, 46 (5): 1689- 1712.
doi: 10.1021/ma3019574
3 LAMBERT S , WAGNER M . Environmental performance of bio-based and biodegradable plastics:the road ahead[J]. Chemical Society Reviews, 2017, 46 (22): 6855- 6871.
doi: 10.1039/C7CS00149E
4 DRUMRIGHTB R E , GRUBER P R , HENTON D E . Polylactic acid technology[J]. Advance Materials, 2000, 12, 1841- 1846.
doi: 10.1002/(ISSN)1521-4095
5 AURAS R , HARTE B , SELKE S . An overview of polylactides as packaging materials[J]. Macromolecular Bioscience, 2004, 4 (9): 835- 864.
doi: 10.1002/(ISSN)1616-5195
6 刘志阳, 翁云宣, 黄志刚, 等. 聚乳酸成核剂研究进展[J]. 生物工程学报, 2016, 32 (6): 798- 806.
6 LIU Z Y , WENG Y X , HUANG Z G , et al. Recent advances in nucleating agents used for poly (lactic acid)[J]. Chinese Journal of Biotechnology, 2016, 32 (6): 798- 806.
7 DATTA R , HENRY M . Lactic acid:recent advances in prod-ucts, processes and technologies-a review[J]. Journal of Chemical Technology & Biotechnology, 2006, 81 (7): 1119- 1129.
8 HIRAO K , OHARA H . Synthesis and recycle of poly(L-lactic acid) using microwave irradiation[J]. Polymer Reviews, 2011, 51 (1): 1- 22.
doi: 10.1080/15583724.2010.537799
9 付田霞, 战孟娇, 王新现. 聚乳酸的改性及其在食品包装领域的应用研究进展[J]. 包装工程, 2009, 30 (12): 111- 114.
9 FU T X , ZHAN M J , WANG X X . Research progress of modifi-cation of poly-(lactic acid) and its application in food packaging field[J]. Packing Engineering, 2009, 30 (12): 111- 114.
10 张光华, 樊国栋, 陈佑宁. 医用聚乳酸类高分子材料的应用[J]. 中国组织工程研究与临床康复, 2007, 11 (18): 3617- 3620.
doi: 10.3321/j.issn:1673-8225.2007.18.043
10 ZHANG G H , FAN G D , CHEN Y N . Application of medical polylactide materials[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11 (18): 3617- 3620.
doi: 10.3321/j.issn:1673-8225.2007.18.043
11 NANDAKUMAR V , SURESH G , CHITTARANJAN S , et al. Synthesis and characterization of hydrophilic high glycolic acid-poly(dl-lactic-co-glycolic acid)/polycaprolactam/polyvinyl alco-hol blends and their biomedical application as a ureteral material[J]. Industrial & Engineering Chemistry Research, 2013, 52 (2): 751- 760.
12 LIU H , ZHANG J . Research progress in toughening modifica-tion of poly(lactic acid)[J]. Polymer Physics, 2011, 49, 1051- 1083.
doi: 10.1002/polb.v49.15
13 杜军, 宋永明, 张志军. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45 (12): 30- 36.
13 DU J , SONG Y M , ZHANG Z J . Influence of maleic anhydride/glycidyl methacrylate cografted polylactic acid on properties of wood flour/PLA composites[J]. Journal of Materials Enginee-ring, 2017, 45 (12): 30- 36.
14 ANDERSON K S , SCHRECK K M , HILLMYER M A , et al. Toughening polylactide[J]. Polymer Reviews, 2008, 48 (1): 85- 108.
doi: 10.1080/15583720701834216
15 万同, 杨光瑞, 张婕. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43 (5): 66- 74.
15 WANG T , YANG G R , ZHANG J . Synthesis of tri-(triethylene glycol-monobutyrate) citrate and its plasticizing effect for poly(lactic acid)[J]. Journal of Materials Engineering, 2015, 43 (5): 66- 74.
16 WANG M , WU Y , LI Y , et al. Progress in toughening poly(lactic acid) with renewable polymers[J]. Polymer Reviews, 2017, 57 (4): 557- 593.
doi: 10.1080/15583724.2017.1287726
17 KRISHNAN S, PANDEY P, MOHANTY S, et al. Toughening of polylactic acid: an overview of research progress[J]. Polymer-Plastics Technology and Engineering[J].2015, 55(15): 1623-1652.
18 NAGARAJAN V , MOHANTY A K , MISRA M . Perspective on polylactic acid(PLA) based sustainable materials for durable applications:focus on toughness and heat resistance[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (6): 2899- 2916.
19 THURBER C M , XU Y , MYERS J C , et al. Accelerating reac-tive compatibilization of PE/PLA blends by an interfacially localized catalyst[J]. ACS Macro Letters, 2015, 4 (1): 30- 33.
doi: 10.1021/mz500770y
20 RIGOUSSEN A , VERGE P , RAQUEZ J , et al. In-depth inves-tigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion[J]. Euro-pean Polymer Journal, 2017, 93, 272- 283.
doi: 10.1016/j.eurpolymj.2017.06.004
21 MOCHIZUKI M , MUKAI K , YAMADA K , et al. Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s[J]. Macromolecules, 1997, 30, 7403- 7407.
doi: 10.1021/ma970036k
22 VALERIO O , PIN J M , MISRA M , et al. Synthesis of glycer-ol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion[J]. ACS Omega, 2016, 1 (6): 1284- 1295.
doi: 10.1021/acsomega.6b00325
23 COATIVY G , MISRA M , MOHANTY A K . Microwave syn-thesis and melt blending of glycerol based toughening agent with poly(lactic acid)[J]. ACS Sustainable Chemistry & Engineer-ing, 2016, 4, 2142- 2149.
24 JIANG L , WOLCOTT M P , ZHANG J . Study of biodegradable polylactide/poly-(butylene adipate-co-terephthalate) blends[J]. Biomacromolecules, 2006, 7 (1): 199- 207.
doi: 10.1021/bm050581q
25 ALITRY R , LAMNAWAR K , MAAZOUZ A . Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation and Stability, 2012, 97 (10): 1898- 1914.
doi: 10.1016/j.polymdegradstab.2012.06.028
26 ZHOU S Y , HUANG H , JI X , et al. Super-robust polylactide barrier films by building densely oriented lamellae incorporated with ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate)[J]. ACS Applied Materials & Interfaces, 2016, 8 (12): 8096- 8109.
27 ZHOU S Y , NIU B , XIE X L , et al. Interfacial shish-kebabs lengthened by coupling effect of in situ flexible nanofibrils and intense shear flow:achieving hierarchy to conquer the conflicts between strength and toughness of polylactide[J]. ACS Applied Materials & Interfaces, 2017, 9 (11): 10148- 10159.
28 RAI R , KESHAVARZ T , ROETHER JA , et al. Medium chain length polyhydroxy-alkanoates, promising new biomedical materials for the future[J]. Materials Science and Engineering:R:Reports, 2011, 72 (3): 29- 47.
doi: 10.1016/j.mser.2010.11.002
29 ANJUM A , ZUBER M , ZIA K M , et al. Microbial production of polyhydroxy-alkanoates (PHAs) and its copolymers:a review of recent advancements[J]. International Journal of Biological Macromolecules, 2016, 89, 161- 174.
doi: 10.1016/j.ijbiomac.2016.04.069
30 YANG X , CLENET J , XU H , et al. Two step extrusion process:from thermal recycling of PHB to plasticized PLA by reactive extrusion grafting of PHB degradation products onto PLA chains[J]. Macromolecules, 2015, 48 (8): 2509- 2518.
doi: 10.1021/acs.macromol.5b00235
31 NERKAR M , RAMSAY J A , RAMSAY B A , et al. Improv-ements in the melt and solid-state properties of poly(lactic acid), poly-3-hydroxyoctanoate and their blends through reactive modification[J]. Polymer, 2015, 64, 51- 61.
doi: 10.1016/j.polymer.2015.03.015
32 ZHANG X Z , ZHANG Y . Reinforcement effect of poly(butyl-ene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends[J]. Carbohydrate Polymers, 2016, 140, 374- 382.
doi: 10.1016/j.carbpol.2015.12.073
33 ZHANG B , SUN B , BIAN X , et al. High melt strength and high toughness PLLA/PBS blends by copolymerization and in situ reactive compatibilization[J]. Industrial & Engineering Chemistry Research, 2016, 56 (1): 52- 62.
34 肖湘莲, 段蔷蔷. 用PBC增韧PLA改性研究[J]. 塑料助剂, 2016, (3): 63- 66.
doi: 10.3969/j.issn.1672-6294.2016.03.013
34 XIAO X L , DUAN Q Q . Study on toughening modification of PBC with PLA[J]. Plastic Additives, 2016, (3): 63- 66.
doi: 10.3969/j.issn.1672-6294.2016.03.013
35 ZHOU L , ZHAO G , JIANG W . Effects of catalytic transesteri-fication and composition on the toughness of poly(lactic acid)/poly(propylene carbonate) blends[J]. Industrial & Engineering Chemistry Research, 2016, 55 (19): 5565- 5573.
36 MOHANTY A K , MISRA M , DRZAL L T . Sustainable bio-composites from renewable resources:opportunities and challen-ges in the green materials world[J]. Journal of Polymers and the Environment, 2002, 10 (1): 19- 26.
37 MUIRURI J K , LIU S , TEO W S , et al. Highly biodegradable and tough polylactic acid-cellulose nanocrystal composite[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (5): 3929- 3973.
38 SUN Y , YANG L , LU X , et al. Biodegradable and renewable poly(lactide)-lignin composites:synthesis, interface and toughening mechanism[J]. Journal of Materials Chemistry A, 2015, 3 (7): 3699- 3709.
doi: 10.1039/C4TA05991C
39 QIAN S P , SHENG K C . PLA toughened by bamboo cellulose nanowhiskers:role of silane compatibilization on the PLA bio-nanocomposite properties[J]. Composites Science and Technolo-gy, 2017, 148, 59- 69.
doi: 10.1016/j.compscitech.2017.05.020
40 张立生, 熊竹, 朱锦. 生物基弹性体研究进展[J]. 高分子通报, 2012, (8): 50- 57.
40 ZHANG L S , XIONG Z , ZHU J . Progress on bio-based elastomers[J]. Chinese Polymer Bulletin, 2012, (8): 50- 57.
41 WANG R G , ZHANG J C , KANG H L , et al. Design, prepa-ration and properties of bio-based elastomer composites aiming at engineering applications[J]. Composites Science and Technolo-gy, 2016, 133, 136- 156.
doi: 10.1016/j.compscitech.2016.07.019
42 ZOLALI A M , HESHMATI V , FAVIS B D . Ultratough co-continuous PLA/PA-11 by interfacially percolated poly(ether-b-amide)[J]. Macromolecules, 2016, 50 (1): 264- 274.
43 ZHANG K , NAGARAJAN V , MISRA M , et al. Supertough-ened renewable PLA reactive multiphase blends system:phase morphology and performance[J]. ACS Applied Materials & Interfaces, 2014, 6 (15): 12436- 12448.
44 KANG H L , QIAO B , WANG R G , et al. Employing a novel bioelastomer to toughen polylactide[J]. Polymer, 2013, 54 (9): 2450- 2458.
doi: 10.1016/j.polymer.2013.02.053
45 HU X R , KANG H L , LI Y , et al. Direct copolycondensation of biobased elastomers based on lactic acid with tunable and versatile properties[J]. Polymer Chemistry, 2015, 6, 8112- 8123.
doi: 10.1039/C5PY01332A
46 BRAS J , HASSAN M L , BRUZESSE C , et al. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops and Products, 2010, 32 (3): 627- 633.
doi: 10.1016/j.indcrop.2010.07.018
47 BITINIS N , VERDEJO R , CASSAGNAU P , et al. Structure and properties of polylactide/natural rubber blends[J]. Materials Chemistry and Physics, 2011, 129 (3): 823- 831.
doi: 10.1016/j.matchemphys.2011.05.016
48 WU N J , ZHANG H , FU G L . Super-tough poly(lactide) ther-moplastic vulcanizates based on modified natural rubber[J]. ACS Sustainable Chemistry & Engineering, 2016, 5 (1): 78- 84.
49 ZHANG C M , WANG W W , HUANG Y , et al. Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber[J]. Materials & Design, 2013, 45, 198- 205.
50 WANG Y H , CHEN K L , XU C H , et al. Supertoughened biobased poly(lactic-acid)-epoxidized natural rubber thermo-plastic vulcanizates:fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism[J]. The Journal of Physical Chemistry B, 2015, 119 (36): 12138- 12146.
doi: 10.1021/acs.jpcb.5b06244
51 LLIGADAS G , RONDA J C , GALIA M , et al. Renewable polymeric materials from vegetable oils:a perspective[J]. Materials Today, 2013, 16 (9): 337- 343.
doi: 10.1016/j.mattod.2013.08.016
52 ROBERTSON M L , PAXTON J M , HILLMYER M A . Tough blends of polylactide and castor oil[J]. ACS Applied Materials & Interfaces, 2011, 3, 3402- 3410.
53 CARBONELL-VERDU A , SAMPER M D , GARCIA-GARCIA D , et al. Plasticization effect of epoxydized cottonseed oil (ECSO) on poly(lactic acid)[J]. Industrial Crops & Products, 2017, 104, 278- 286.
54 XIONG Z , YANG Y , FENG J X , et al. Preparation and chara-cterization of poly-(lactic acid)/starch composites toughened with epoxidized soybean oil[J]. Carbohydrate Polymers, 2013, 92 (1): 810- 816.
doi: 10.1016/j.carbpol.2012.09.007
55 ZHU R , LIU H Z , ZHANG J W . Compatibilizing effects of maleated poly(lactic acid) (PLA) on properties of PLA/soy pro-tein composites[J]. Industrial & Engineering Chemistry Resea-rch, 2011, 51 (22): 7786- 7792.
56 TANASE C E , SPIRIDON I . PLA/chitosan/keratin composites for biomedical applications[J]. Materials Science and Enginee-ring:C, 2014, 40, 242- 247.
doi: 10.1016/j.msec.2014.03.054
57 MULLER J , CASADO Q A , GONZALEZ-MARTINEZ C , et al. Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid(PLA) and starch[J]. European Polymer Journal, 2017, 96, 316- 325.
doi: 10.1016/j.eurpolymj.2017.09.009
58 RHIM J , MOHANTY K A , SINGH P , et al. Preparation and properties of bio-degradable multilayer films based on soy protein isolate and poly(lactide)[J]. Industrial & Engineering Chemistry Research, 2006, 45, 3059- 3066.
59 ZHU R , LIU H , ZHANG J . Compatibilizing effects of maleated poly(lactic acid) (PLA) on properties of PLA/soy protein composites[J]. Industrial & Engineering Chemistry Research, 2011, 51 (22): 7786- 7792.
60 JALVO B , MATHEW A P , ROSAL R . Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin nanocrystals[J]. Journal of Membrane Science, 2017, 544, 261- 271.
doi: 10.1016/j.memsci.2017.09.033
61 HERRERA N , SALABERRIA A M , MATHEW A P , et al. Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates:effects on mechanical, thermal and optical properties[J]. Composites Part A:Applied Science and Manufacturing, 2016, 83, 89- 97.
doi: 10.1016/j.compositesa.2015.05.024
62 SHIRAI M A , MULLER C M O , GROSSMANN M V E , et al. Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets[J]. Journal of Polymers and the Environment, 2015, 23 (1): 54- 61.
doi: 10.1007/s10924-014-0680-9
63 GRECO A , MAFFEZZOLI A . Cardanol derivatives as innova-tive bio-plasticizers for poly-(lactic acid)[J]. Polymer Degrada-tion and Stability, 2016, 132, 213- 219.
doi: 10.1016/j.polymdegradstab.2016.02.020
64 SARAZIN P , LI G , ORTS W J , et al. Binary and ternary bl-ends of polylactide, polycaprolactone and thermoplastic starch[J]. Polymer, 2008, 49 (2): 599- 609.
doi: 10.1016/j.polymer.2007.11.029
65 SHI Q F , CHEN C , GAO L , et al. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE[J]. Polymer Degradation and Stability, 2011, 96 (1): 175- 182.
doi: 10.1016/j.polymdegradstab.2010.10.002
66 CLASEN S H , MULLER C M O , PIRES A T N . Maleic anh-ydride as a compatibilizer and plasticizer in TPS/PLA blends[J]. Journal of the Brazilian Chemical Society, 2015, 26 (8): 1583- 1590.
67 WU C S . Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid characterization and bio-degrad-ability assessment[J]. Macromolecular Bioscience, 205, 5, 352- 361.
68 WOOTTHIKANOKKHAN J , KASEMW ANANIMIT P , SOMBATSOMPOP N , et al. Preparation of modified starch-grafted poly(lactic acid) and a study on compatibilizing efficiency of the copolymers in poly(lactic acid)/thermoplastic starch blends[J]. Journal of Applied Polymer Science, 2012, 126
69 STOCLET G , SEGUELA R , LEFEBVR-E J M . Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers:polylactide/polyamide11[J]. Polymer, 2011, 52 (6): 1417- 1425.
doi: 10.1016/j.polymer.2011.02.002
70 LAO S C , WU C , KOO J H , et al. Flame-retardant polyamide 11 and 12 nanocomposites:processing, morphology, and mech-anical properties[J]. Journal of Composite Materials, 2010, 44 (25): 2933- 2951.
doi: 10.1177/0021998310369580
71 DONG W Y , CAO X J , LI Y J . High-performance biosourced poly(lactic acid)/polyamide 11 blends with controlled salami structure[J]. Polymer International, 2014, 63 (6): 1094- 1100.
doi: 10.1002/pi.2014.63.issue-6
72 ZHANG L S , XIONG Z , SHAMS S S , et al. Free radical competitions in polylactide/bio-based thermoplastic polyuret-hane/free radical initiator ternary blends and their final proper-ties[J]. Polymer, 2015, 64, 69- 75.
doi: 10.1016/j.polymer.2015.03.032
73 ZHANG X , KORANTENG E , WU Z S , et al. Structure and properties of poly-lactide toughened by polyurethane prepolymer[J]. Journal of Applied Polymer Science, 2016, 133, 42983.
[1] 万长鑫, 詹胜鹏, 陈辉, 李银华, 贾丹, 李健, 段海涛. 功能性填料改性聚合物材料的摩擦学研究进展[J]. 材料工程, 2022, 50(2): 73-83.
[2] 范泽文, 赵新宇, 邱帅, 王艳, 郭静, 权慧欣, 徐兰娟. 聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性[J]. 材料工程, 2021, 49(4): 135-141.
[3] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[4] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[5] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[6] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
[7] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[8] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[9] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[10] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[11] 乔海涛, 梁滨, 张军营, 刘清方, 陆松, 赵升龙, 张瑞秀. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12): 38-47.
[12] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[13] 李洪峰, 王德志, 曲春艳, 顾继友, 冯浩, 杨海冬, 肖万宝. 高性能双马树脂底胶的性能[J]. 材料工程, 2016, 44(6): 38-43.
[14] 吕生华, 朱琳琳, 李莹, 贺亚亚, 杨文强. 氧化石墨烯复合材料的研究现状及进展[J]. 材料工程, 2016, 44(12): 107-117.
[15] 杨继年, 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉. 超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能[J]. 材料工程, 2016, 44(11): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn