Polylactic acid (PLA), a new type of bio-based renewable biodegradable material, has attracted more and more attention because of its advantages with high mechanical strength, ease of processing, high melting point, biodegradability and biocompatibility. However, its inherent brittl-eness, low elongation at break and breaking strength severely limit its practical application and has also led to more extensive and comprehensive research. This review summarizes the research progress of toughening polylactic acid with biodegradable macromolecules, especially focusing on the updated development on bio-based polyesters, bio-based elastomers, plant-based biopolymers, natural rubber and vegetable oils, and biomacromolecules, and meanwhile, the problem of weak impact toughness and low crystallization rate and low thermal transition temperature of polylactic acid after improving toughness was proposed, and the future direction of development and the subjects needed to focused on was finally predicted.
YU L , DEAN K , LI L . Polymer blends and composites from re-newable resources[J]. Progress in Polymer Science, 2006, 31 (6): 576- 602.
doi: 10.1016/j.progpolymsci.2006.03.002
2
YAO K , TANG C . Controlled polymerization of next-generation renewable monomers and beyond[J]. Macromolecules, 2013, 46 (5): 1689- 1712.
doi: 10.1021/ma3019574
3
LAMBERT S , WAGNER M . Environmental performance of bio-based and biodegradable plastics:the road ahead[J]. Chemical Society Reviews, 2017, 46 (22): 6855- 6871.
doi: 10.1039/C7CS00149E
4
DRUMRIGHTB R E , GRUBER P R , HENTON D E . Polylactic acid technology[J]. Advance Materials, 2000, 12, 1841- 1846.
doi: 10.1002/(ISSN)1521-4095
5
AURAS R , HARTE B , SELKE S . An overview of polylactides as packaging materials[J]. Macromolecular Bioscience, 2004, 4 (9): 835- 864.
doi: 10.1002/(ISSN)1616-5195
LIU Z Y , WENG Y X , HUANG Z G , et al. Recent advances in nucleating agents used for poly (lactic acid)[J]. Chinese Journal of Biotechnology, 2016, 32 (6): 798- 806.
7
DATTA R , HENRY M . Lactic acid:recent advances in prod-ucts, processes and technologies-a review[J]. Journal of Chemical Technology & Biotechnology, 2006, 81 (7): 1119- 1129.
8
HIRAO K , OHARA H . Synthesis and recycle of poly(L-lactic acid) using microwave irradiation[J]. Polymer Reviews, 2011, 51 (1): 1- 22.
doi: 10.1080/15583724.2010.537799
FU T X , ZHAN M J , WANG X X . Research progress of modifi-cation of poly-(lactic acid) and its application in food packaging field[J]. Packing Engineering, 2009, 30 (12): 111- 114.
ZHANG G H , FAN G D , CHEN Y N . Application of medical polylactide materials[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11 (18): 3617- 3620.
doi: 10.3321/j.issn:1673-8225.2007.18.043
11
NANDAKUMAR V , SURESH G , CHITTARANJAN S , et al. Synthesis and characterization of hydrophilic high glycolic acid-poly(dl-lactic-co-glycolic acid)/polycaprolactam/polyvinyl alco-hol blends and their biomedical application as a ureteral material[J]. Industrial & Engineering Chemistry Research, 2013, 52 (2): 751- 760.
12
LIU H , ZHANG J . Research progress in toughening modifica-tion of poly(lactic acid)[J]. Polymer Physics, 2011, 49, 1051- 1083.
doi: 10.1002/polb.v49.15
DU J , SONG Y M , ZHANG Z J . Influence of maleic anhydride/glycidyl methacrylate cografted polylactic acid on properties of wood flour/PLA composites[J]. Journal of Materials Enginee-ring, 2017, 45 (12): 30- 36.
14
ANDERSON K S , SCHRECK K M , HILLMYER M A , et al. Toughening polylactide[J]. Polymer Reviews, 2008, 48 (1): 85- 108.
doi: 10.1080/15583720701834216
WANG T , YANG G R , ZHANG J . Synthesis of tri-(triethylene glycol-monobutyrate) citrate and its plasticizing effect for poly(lactic acid)[J]. Journal of Materials Engineering, 2015, 43 (5): 66- 74.
16
WANG M , WU Y , LI Y , et al. Progress in toughening poly(lactic acid) with renewable polymers[J]. Polymer Reviews, 2017, 57 (4): 557- 593.
doi: 10.1080/15583724.2017.1287726
17
KRISHNAN S, PANDEY P, MOHANTY S, et al. Toughening of polylactic acid: an overview of research progress[J]. Polymer-Plastics Technology and Engineering[J].2015, 55(15): 1623-1652.
18
NAGARAJAN V , MOHANTY A K , MISRA M . Perspective on polylactic acid(PLA) based sustainable materials for durable applications:focus on toughness and heat resistance[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (6): 2899- 2916.
19
THURBER C M , XU Y , MYERS J C , et al. Accelerating reac-tive compatibilization of PE/PLA blends by an interfacially localized catalyst[J]. ACS Macro Letters, 2015, 4 (1): 30- 33.
doi: 10.1021/mz500770y
20
RIGOUSSEN A , VERGE P , RAQUEZ J , et al. In-depth inves-tigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion[J]. Euro-pean Polymer Journal, 2017, 93, 272- 283.
doi: 10.1016/j.eurpolymj.2017.06.004
21
MOCHIZUKI M , MUKAI K , YAMADA K , et al. Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s[J]. Macromolecules, 1997, 30, 7403- 7407.
doi: 10.1021/ma970036k
22
VALERIO O , PIN J M , MISRA M , et al. Synthesis of glycer-ol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion[J]. ACS Omega, 2016, 1 (6): 1284- 1295.
doi: 10.1021/acsomega.6b00325
23
COATIVY G , MISRA M , MOHANTY A K . Microwave syn-thesis and melt blending of glycerol based toughening agent with poly(lactic acid)[J]. ACS Sustainable Chemistry & Engineer-ing, 2016, 4, 2142- 2149.
24
JIANG L , WOLCOTT M P , ZHANG J . Study of biodegradable polylactide/poly-(butylene adipate-co-terephthalate) blends[J]. Biomacromolecules, 2006, 7 (1): 199- 207.
doi: 10.1021/bm050581q
25
ALITRY R , LAMNAWAR K , MAAZOUZ A . Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation and Stability, 2012, 97 (10): 1898- 1914.
doi: 10.1016/j.polymdegradstab.2012.06.028
26
ZHOU S Y , HUANG H , JI X , et al. Super-robust polylactide barrier films by building densely oriented lamellae incorporated with ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate)[J]. ACS Applied Materials & Interfaces, 2016, 8 (12): 8096- 8109.
27
ZHOU S Y , NIU B , XIE X L , et al. Interfacial shish-kebabs lengthened by coupling effect of in situ flexible nanofibrils and intense shear flow:achieving hierarchy to conquer the conflicts between strength and toughness of polylactide[J]. ACS Applied Materials & Interfaces, 2017, 9 (11): 10148- 10159.
28
RAI R , KESHAVARZ T , ROETHER JA , et al. Medium chain length polyhydroxy-alkanoates, promising new biomedical materials for the future[J]. Materials Science and Engineering:R:Reports, 2011, 72 (3): 29- 47.
doi: 10.1016/j.mser.2010.11.002
29
ANJUM A , ZUBER M , ZIA K M , et al. Microbial production of polyhydroxy-alkanoates (PHAs) and its copolymers:a review of recent advancements[J]. International Journal of Biological Macromolecules, 2016, 89, 161- 174.
doi: 10.1016/j.ijbiomac.2016.04.069
30
YANG X , CLENET J , XU H , et al. Two step extrusion process:from thermal recycling of PHB to plasticized PLA by reactive extrusion grafting of PHB degradation products onto PLA chains[J]. Macromolecules, 2015, 48 (8): 2509- 2518.
doi: 10.1021/acs.macromol.5b00235
31
NERKAR M , RAMSAY J A , RAMSAY B A , et al. Improv-ements in the melt and solid-state properties of poly(lactic acid), poly-3-hydroxyoctanoate and their blends through reactive modification[J]. Polymer, 2015, 64, 51- 61.
doi: 10.1016/j.polymer.2015.03.015
32
ZHANG X Z , ZHANG Y . Reinforcement effect of poly(butyl-ene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends[J]. Carbohydrate Polymers, 2016, 140, 374- 382.
doi: 10.1016/j.carbpol.2015.12.073
33
ZHANG B , SUN B , BIAN X , et al. High melt strength and high toughness PLLA/PBS blends by copolymerization and in situ reactive compatibilization[J]. Industrial & Engineering Chemistry Research, 2016, 56 (1): 52- 62.
XIAO X L , DUAN Q Q . Study on toughening modification of PBC with PLA[J]. Plastic Additives, 2016, (3): 63- 66.
doi: 10.3969/j.issn.1672-6294.2016.03.013
35
ZHOU L , ZHAO G , JIANG W . Effects of catalytic transesteri-fication and composition on the toughness of poly(lactic acid)/poly(propylene carbonate) blends[J]. Industrial & Engineering Chemistry Research, 2016, 55 (19): 5565- 5573.
36
MOHANTY A K , MISRA M , DRZAL L T . Sustainable bio-composites from renewable resources:opportunities and challen-ges in the green materials world[J]. Journal of Polymers and the Environment, 2002, 10 (1): 19- 26.
37
MUIRURI J K , LIU S , TEO W S , et al. Highly biodegradable and tough polylactic acid-cellulose nanocrystal composite[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (5): 3929- 3973.
38
SUN Y , YANG L , LU X , et al. Biodegradable and renewable poly(lactide)-lignin composites:synthesis, interface and toughening mechanism[J]. Journal of Materials Chemistry A, 2015, 3 (7): 3699- 3709.
doi: 10.1039/C4TA05991C
39
QIAN S P , SHENG K C . PLA toughened by bamboo cellulose nanowhiskers:role of silane compatibilization on the PLA bio-nanocomposite properties[J]. Composites Science and Technolo-gy, 2017, 148, 59- 69.
doi: 10.1016/j.compscitech.2017.05.020
ZHANG L S , XIONG Z , ZHU J . Progress on bio-based elastomers[J]. Chinese Polymer Bulletin, 2012, (8): 50- 57.
41
WANG R G , ZHANG J C , KANG H L , et al. Design, prepa-ration and properties of bio-based elastomer composites aiming at engineering applications[J]. Composites Science and Technolo-gy, 2016, 133, 136- 156.
doi: 10.1016/j.compscitech.2016.07.019
42
ZOLALI A M , HESHMATI V , FAVIS B D . Ultratough co-continuous PLA/PA-11 by interfacially percolated poly(ether-b-amide)[J]. Macromolecules, 2016, 50 (1): 264- 274.
43
ZHANG K , NAGARAJAN V , MISRA M , et al. Supertough-ened renewable PLA reactive multiphase blends system:phase morphology and performance[J]. ACS Applied Materials & Interfaces, 2014, 6 (15): 12436- 12448.
44
KANG H L , QIAO B , WANG R G , et al. Employing a novel bioelastomer to toughen polylactide[J]. Polymer, 2013, 54 (9): 2450- 2458.
doi: 10.1016/j.polymer.2013.02.053
45
HU X R , KANG H L , LI Y , et al. Direct copolycondensation of biobased elastomers based on lactic acid with tunable and versatile properties[J]. Polymer Chemistry, 2015, 6, 8112- 8123.
doi: 10.1039/C5PY01332A
46
BRAS J , HASSAN M L , BRUZESSE C , et al. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops and Products, 2010, 32 (3): 627- 633.
doi: 10.1016/j.indcrop.2010.07.018
47
BITINIS N , VERDEJO R , CASSAGNAU P , et al. Structure and properties of polylactide/natural rubber blends[J]. Materials Chemistry and Physics, 2011, 129 (3): 823- 831.
doi: 10.1016/j.matchemphys.2011.05.016
48
WU N J , ZHANG H , FU G L . Super-tough poly(lactide) ther-moplastic vulcanizates based on modified natural rubber[J]. ACS Sustainable Chemistry & Engineering, 2016, 5 (1): 78- 84.
49
ZHANG C M , WANG W W , HUANG Y , et al. Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber[J]. Materials & Design, 2013, 45, 198- 205.
50
WANG Y H , CHEN K L , XU C H , et al. Supertoughened biobased poly(lactic-acid)-epoxidized natural rubber thermo-plastic vulcanizates:fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism[J]. The Journal of Physical Chemistry B, 2015, 119 (36): 12138- 12146.
doi: 10.1021/acs.jpcb.5b06244
51
LLIGADAS G , RONDA J C , GALIA M , et al. Renewable polymeric materials from vegetable oils:a perspective[J]. Materials Today, 2013, 16 (9): 337- 343.
doi: 10.1016/j.mattod.2013.08.016
52
ROBERTSON M L , PAXTON J M , HILLMYER M A . Tough blends of polylactide and castor oil[J]. ACS Applied Materials & Interfaces, 2011, 3, 3402- 3410.
53
CARBONELL-VERDU A , SAMPER M D , GARCIA-GARCIA D , et al. Plasticization effect of epoxydized cottonseed oil (ECSO) on poly(lactic acid)[J]. Industrial Crops & Products, 2017, 104, 278- 286.
54
XIONG Z , YANG Y , FENG J X , et al. Preparation and chara-cterization of poly-(lactic acid)/starch composites toughened with epoxidized soybean oil[J]. Carbohydrate Polymers, 2013, 92 (1): 810- 816.
doi: 10.1016/j.carbpol.2012.09.007
55
ZHU R , LIU H Z , ZHANG J W . Compatibilizing effects of maleated poly(lactic acid) (PLA) on properties of PLA/soy pro-tein composites[J]. Industrial & Engineering Chemistry Resea-rch, 2011, 51 (22): 7786- 7792.
56
TANASE C E , SPIRIDON I . PLA/chitosan/keratin composites for biomedical applications[J]. Materials Science and Enginee-ring:C, 2014, 40, 242- 247.
doi: 10.1016/j.msec.2014.03.054
57
MULLER J , CASADO Q A , GONZALEZ-MARTINEZ C , et al. Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid(PLA) and starch[J]. European Polymer Journal, 2017, 96, 316- 325.
doi: 10.1016/j.eurpolymj.2017.09.009
58
RHIM J , MOHANTY K A , SINGH P , et al. Preparation and properties of bio-degradable multilayer films based on soy protein isolate and poly(lactide)[J]. Industrial & Engineering Chemistry Research, 2006, 45, 3059- 3066.
59
ZHU R , LIU H , ZHANG J . Compatibilizing effects of maleated poly(lactic acid) (PLA) on properties of PLA/soy protein composites[J]. Industrial & Engineering Chemistry Research, 2011, 51 (22): 7786- 7792.
60
JALVO B , MATHEW A P , ROSAL R . Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin nanocrystals[J]. Journal of Membrane Science, 2017, 544, 261- 271.
doi: 10.1016/j.memsci.2017.09.033
61
HERRERA N , SALABERRIA A M , MATHEW A P , et al. Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates:effects on mechanical, thermal and optical properties[J]. Composites Part A:Applied Science and Manufacturing, 2016, 83, 89- 97.
doi: 10.1016/j.compositesa.2015.05.024
62
SHIRAI M A , MULLER C M O , GROSSMANN M V E , et al. Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets[J]. Journal of Polymers and the Environment, 2015, 23 (1): 54- 61.
doi: 10.1007/s10924-014-0680-9
63
GRECO A , MAFFEZZOLI A . Cardanol derivatives as innova-tive bio-plasticizers for poly-(lactic acid)[J]. Polymer Degrada-tion and Stability, 2016, 132, 213- 219.
doi: 10.1016/j.polymdegradstab.2016.02.020
64
SARAZIN P , LI G , ORTS W J , et al. Binary and ternary bl-ends of polylactide, polycaprolactone and thermoplastic starch[J]. Polymer, 2008, 49 (2): 599- 609.
doi: 10.1016/j.polymer.2007.11.029
65
SHI Q F , CHEN C , GAO L , et al. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE[J]. Polymer Degradation and Stability, 2011, 96 (1): 175- 182.
doi: 10.1016/j.polymdegradstab.2010.10.002
66
CLASEN S H , MULLER C M O , PIRES A T N . Maleic anh-ydride as a compatibilizer and plasticizer in TPS/PLA blends[J]. Journal of the Brazilian Chemical Society, 2015, 26 (8): 1583- 1590.
67
WU C S . Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid characterization and bio-degrad-ability assessment[J]. Macromolecular Bioscience, 205, 5, 352- 361.
68
WOOTTHIKANOKKHAN J , KASEMW ANANIMIT P , SOMBATSOMPOP N , et al. Preparation of modified starch-grafted poly(lactic acid) and a study on compatibilizing efficiency of the copolymers in poly(lactic acid)/thermoplastic starch blends[J]. Journal of Applied Polymer Science, 2012, 126
69
STOCLET G , SEGUELA R , LEFEBVR-E J M . Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers:polylactide/polyamide11[J]. Polymer, 2011, 52 (6): 1417- 1425.
doi: 10.1016/j.polymer.2011.02.002
70
LAO S C , WU C , KOO J H , et al. Flame-retardant polyamide 11 and 12 nanocomposites:processing, morphology, and mech-anical properties[J]. Journal of Composite Materials, 2010, 44 (25): 2933- 2951.
doi: 10.1177/0021998310369580
71
DONG W Y , CAO X J , LI Y J . High-performance biosourced poly(lactic acid)/polyamide 11 blends with controlled salami structure[J]. Polymer International, 2014, 63 (6): 1094- 1100.
doi: 10.1002/pi.2014.63.issue-6
72
ZHANG L S , XIONG Z , SHAMS S S , et al. Free radical competitions in polylactide/bio-based thermoplastic polyuret-hane/free radical initiator ternary blends and their final proper-ties[J]. Polymer, 2015, 64, 69- 75.
doi: 10.1016/j.polymer.2015.03.032
73
ZHANG X , KORANTENG E , WU Z S , et al. Structure and properties of poly-lactide toughened by polyurethane prepolymer[J]. Journal of Applied Polymer Science, 2016, 133, 42983.