1 National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084, China 2 Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 3 Beijing Engineering Research Center of Graphene and Application, Beijing 100095, China
In order to understand the cooling procedure of aviation engine blade after titanium combustion, the finite element method was used to simulate the temperature and fluid field of ROTOR37 model after combustion occurred with 550℃ fire proof titanium alloy(TF550 titanium alloy) and 600℃ high temperature titanium alloy(TA29 titanium alloy), respectively. The results show that the relative mach number influences the cooling procedure of blade, the cooling performance at the area of mach number about 0.7-1 is much higher than other area; compared with the leading edge, the cooling process of the tip is more complex, and the cooling rate is an order of magnitude lower than that of the leading edge. The difference of cooling temperature between TF550 titanium alloy and TA29 titanium alloy at tip combustion area is quite observable; and the maximum value occurs within the scope of 1000-2500K; the former is more than 100K lower than the latter, the value is reduced into 30K within the scope of 300-500K. The temperature distortion of the flow field would increase the intensity of the surge, the effect of combustion on the surge margin should be fully considered during the design of the blade.
БОРИСОВА Е А , СКЛЯРОВ Н М . Авиационные материалы и технологи:выпуск горение и пожаробезопасность титановых сплавов[M]. Москва, Poccия: ВИАМ, 2007: 8- 25.
2
НОЧОВНАЯ Н А , АЛЕКСЕЕВ Е Б , ИЗОТОВА А Ю др . Пожаробезопасные титановые сплавы и особенности их применения[J]. Титан, 2012, (4): 42- 46.
CAI J M , MI G B , GAO F , et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44 (8): 1- 10.
4
RUNYAN C C , MOULDER J C , CLARK A F . Time-resolved spectra of bulk titanium combustion[J]. Combustion and Flame, 1974, 23 (1): 129- 133.
5
SEWARD W A. Combustion of titanium laser-initiated in a controlled airstream[D]. Dayton, USA: Air University, 1975.
6
CLARK A F , MOULDER J C , RUNYAN C C . Combustion of bulk titanium in oxygen[J]. Symposium on Combustion, 1975, 15 (1): 489- 499.
7
ANDERSON V G, MANTY B A. Titanium alloy ignition and combustion[R]. Florida, USA: Pratt & Whitney Aircraft Group, Report No.76083-30, 1978: 10-32.
8
FOX D G. Investigation of titanium combustion characteristics and suppression techniques[R]. Ohio, USA: Air Force Aero Propulsion Laboratory, Report No.45433, 1976: 14-60.
9
GLICKSTEIN M R. A new analytical model for prediction of self-sustained combustion of titanium airfoils[R]. Florida, USA:Pratt & Whitney Aircraft Group, Report No.4019-81, 1974:81-107.
10
BORISOVA E A , BARDANOV K V . Ignition of titanium alloys in media containing oxygen[J]. Metal Science and Heat Treatment, 1963, 5 (2): 98- 101.
doi: 10.1007/BF00650698
11
BOLOBOV V I . Possible mechanism of autoignition of titanium alloys in oxygen[J]. Combustion Explosion and Shock Waves, 2003, 39 (6): 677- 680.
doi: 10.1023/B:CESW.0000007681.85955.5d
LUO G X , CHEN Z L , CHEN T . Combustion problem of titanium alloy and protective coating technology in aero engine[J]. Aviation Engineering and Maintenance, 1994, (2): 20- 22.
HUANG X , CAO C X , MA J M , et al. Titanium combustion in aeroengines and fire-resistant titanium alloys[J]. Journal of Materials Engineering, 1997, (8): 11- 15.
ZHAO Y Q , ZHOU L , DENG J . Burning resistant behavior and mechanism of a Ti40 alloy[J]. Rare Metal Materials and Engineering, 1999, 28 (2): 77- 80.
doi: 10.3321/j.issn:1002-185X.1999.02.004
15
陈光. 频发的发动机钛着火故障[J]. 国际航空, 2009, (3): 45- 47.
15
CHEN G . Frequent Ti-alloy fired accidents[J]. International Aviation, 2009, (3): 45- 47.
MI G B , HUANG X , CAO J X , et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials, 2016, 36 (3): 20- 26.
MI G B , HUANG X , CAO J X , et al. Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloys[J]. Acta Metallurgica Sinica, 2014, 50 (5): 575- 586.
MI G B , HUANG X , CAO J X , et al. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition[J]. Acta Physica Sinica, 2016, 65 (5): 056103.
MI G B , CAO C X , HUANG X , et al. Non-isothermal oxidation characteristic and fireproof property prediction of Ti-V-Cr type fireproof titanium alloy[J]. Journal of Materials Engineering, 2016, 44 (1): 1- 10.
doi: 10.3969/j.issn.1673-1433.2016.01.001
YIN S , JIN D H , ZHU F , et al. Influence of turbulence models on simulation of a compressor[J]. Journal of Aerospace Power, 2010, 25 (12): 2683- 2689.
22
DUNHAM J. CFD validation for propulsion system components[R]. Neuilly-Sur-Seine, France: AGARD, Report No.AR-355, 1998: 1-84.
23
DENTON J D . Lessons from Rotor 37[J]. Journal of Thermal Science, 1997, 6 (1): 1- 13.
doi: 10.1007/s11630-997-0010-9