Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 37-46    DOI: 10.11868/j.issn.1001-4381.2018.000182
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟
梁贤烨1,2, 弭光宝2,3, 李培杰1, 曹京霞2, 黄旭2
1. 清华大学 新材料国际研发中心, 北京 100084;
2. 中国航发北京航空材料研究院 先进钛合金航空科技重点实验室, 北京 100095;
3. 北京市石墨烯及应用工程技术研究中心, 北京 100095
Cooling Process of Titanium Alloy Blades After Combustion Using Three Dimensional Heat Flow Coupling Numerical Simulation
LIANG Xian-ye1,2, MI Guang-bao2,3, LI Pei-jie1, CAO Jing-xia2, HUANG Xu2
1. National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084, China;
2. Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
3. Beijing Engineering Research Center of Graphene and Application, Beijing 100095, China
全文: PDF(5411 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了理解航空发动机钛火发生后叶片的冷却过程,采用有限元方法结合ROTOR37转子模型,分别对550℃阻燃钛合金(TF550钛合金)和600℃高温钛合金(TA29钛合金)燃烧后压气机通道内温度场、流场进行数值模拟研究。结果表明:相对马赫数对于压气机通道内叶片散热有一定的影响,其中叶尖燃烧区域在0.7~1的低马赫数区域散热能力最佳;相对于前缘燃烧区域,叶尖燃烧区域的冷却过程更为复杂,且冷却速率比前缘燃烧区域低一个数量级;在叶尖燃烧区域内,TF550钛合金和TA29钛合金的冷却温度差异比较显著,在1000~2500K温度区间内的差别最大,前者比后者低100K以上,在300~500K温度区间内前者比后者低30K以内;叶尖燃烧区域流场的温度畸变会增加喘振的剧烈程度,设计叶片时应充分考虑燃烧对喘振裕度的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁贤烨
弭光宝
李培杰
曹京霞
黄旭
关键词 钛燃烧冷却三维热流耦合数值模拟航空发动机    
Abstract:In order to understand the cooling procedure of aviation engine blade after titanium combustion, the finite element method was used to simulate the temperature and fluid field of ROTOR37 model after combustion occurred with 550℃ fire proof titanium alloy(TF550 titanium alloy) and 600℃ high temperature titanium alloy(TA29 titanium alloy), respectively. The results show that the relative mach number influences the cooling procedure of blade, the cooling performance at the area of mach number about 0.7-1 is much higher than other area; compared with the leading edge, the cooling process of the tip is more complex, and the cooling rate is an order of magnitude lower than that of the leading edge. The difference of cooling temperature between TF550 titanium alloy and TA29 titanium alloy at tip combustion area is quite observable; and the maximum value occurs within the scope of 1000-2500K; the former is more than 100K lower than the latter, the value is reduced into 30K within the scope of 300-500K. The temperature distortion of the flow field would increase the intensity of the surge, the effect of combustion on the surge margin should be fully considered during the design of the blade.
Key wordstitanium combustion    cooling    three dimensional thermo-fluid couple    numerical simulation    aero-engine
收稿日期: 2018-02-12      出版日期: 2018-10-17
中图分类号:  TG146.2  
通讯作者: 弭光宝(1981-),男,博士,高级工程师,主要从事先进高温钛合金及其纳米复合材料、阻燃性能等方面研究,联系地址:北京市81信箱15分箱(100095),E-mail:miguangbao@163.com     E-mail: miguangbao@163.com
引用本文:   
梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
LIANG Xian-ye, MI Guang-bao, LI Pei-jie, CAO Jing-xia, HUANG Xu. Cooling Process of Titanium Alloy Blades After Combustion Using Three Dimensional Heat Flow Coupling Numerical Simulation. Journal of Materials Engineering, 2018, 46(10): 37-46.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000182      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/37
[1] БОРИСОВА Е А, СКЛЯРОВ Н М. Авиационные материалы и технологи:выпуск горение и пожаробезопасность титановых сплавов[M]. Москва,Poccия:ВИАМ, 2007:8-25.
[2] НОЧОВНАЯ Н А, АЛЕКСЕЕВ Е Б, ИЗОТОВА А Ю, др. Пожаробезопасные титановые сплавы и особенности их применения[J]. Титан,2012(4):42-46.
[3] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8):1-10. CAI J M, MI G B, GAO F, et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering,2016,44(8):1-10.
[4] RUNYAN C C, MOULDER J C, CLARK A F. Time-resolved spectra of bulk titanium combustion[J]. Combustion and Flame, 1974, 23(1):129-133.
[5] SEWARD W A. Combustion of titanium laser-initiated in a controlled airstream[D]. Dayton,USA:Air University,1975.
[6] CLARK A F, MOULDER J C, RUNYAN C C. Combustion of bulk titanium in oxygen[J]. Symposium on Combustion,1975,15(1):489-499.
[7] ANDERSON V G, MANTY B A. Titanium alloy ignition and combustion[R]. Florida,USA:Pratt & Whitney Aircraft Group, Report No.76083-30,1978:10-32.
[8] FOX D G. Investigation of titanium combustion characteristics and suppression techniques[R]. Ohio,USA:Air Force Aero Propulsion Laboratory,Report No.45433,1976:14-60.
[9] GLICKSTEIN M R. A new analytical model for prediction of self-sustained combustion of titanium airfoils[R]. Florida,USA:Pratt & Whitney Aircraft Group, Report No.4019-81,1974:81-107.
[10] BORISOVA E A, BARDANOV K V. Ignition of titanium alloys in media containing oxygen[J]. Metal Science and Heat Treatment,1963,5(2):98-101.
[11] BOLOBOV V I. Possible mechanism of autoignition of titanium alloys in oxygen[J]. Combustion Explosion and Shock Waves, 2003,39(6):677-680.
[12] 骆更新, 陈珠琳, 陈韬. 航空发动机钛合金燃烧问题及涂层防护技术[J]. 航空制造工程, 1994(2):20-22. LUO G X, CHEN Z L, CHEN T. Combustion problem of titanium alloy and protective coating technology in aero engine[J]. Aviation Engineering and Maintenance,1994(2):20-22.
[13] 黄旭, 曹春晓, 马济民, 等. 航空发动机钛燃烧及阻燃钛合金[J]. 材料工程, 1997(8):11-15. HUANG X, CAO C X, MA J M, et al. Titanium combustion in aeroengines and fire-resistant titanium alloys[J]. Journal of Materials Engineering,1997(8):11-15.
[14] 赵永庆, 周廉, 邓炬. Ti40合金的阻燃性能及其阻燃机理分析[J]. 稀有金属材料与工程,1999,28(2):77-80. ZHAO Y Q, ZHOU L, DENG J. Burning resistant behavior and mechanism of a Ti40 alloy[J]. Rare Metal Materials and Engineering,1999,28(2):77-80.
[15] 陈光. 频发的发动机钛着火故障[J]. 国际航空, 2009(3):45-47. CHEN G. Frequent Ti-alloy fired accidents[J]. International Aviation,2009(3):45-47.
[16] 罗秋生, 李世峰, 裴会平. 航空发动机钛火预防技术研究的进展[J]. 航空动力学报, 2012,27(12):2763-2768. LUO Q S, LI S F, PEI H P. Progress in titanium fire resistant technology for aero engine[J]. Journal of Aerospace Power,2012,27(12):2763-2768.
[17] 弭光宝, 黄旭, 曹京霞, 等. 航空发动机钛火试验技术研究新进展[J]. 航空材料学报, 2016, 36(3):20-26. MI G B, HUANG X, CAO J X, et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials,2016,36(3):20-26.
[18] 弭光宝, 黄旭, 曹京霞, 等. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析[J]. 金属学报, 2014, 50(5):575-586. MI G B, HUANG X, CAO J X, et al. Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloys[J]. Acta Metallurgica Sinica,2014,50(5):575-586.
[19] 弭光宝, 黄旭, 曹京霞, 等. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征[J]. 物理学报, 2016, 65(5):056103. MI G B, HUANG X, CAO J X, et al. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition[J]. Acta Physica Sinica,2016,65(5):056103.
[20] 弭光宝,曹春晓,黄旭,等. Ti-V-Cr系阻燃钛合金的非等温氧化行为及阻燃性能预测[J]. 材料工程,2016,44(1):1-10. MI G B, CAO C X, HUANG X, et al. Non-isothermal oxidation characteristic and fireproof property prediction of Ti-V-Cr type fireproof titanium alloy[J]. Journal of Materials Engineering,2016,44(1):1-10.
[21] 尹松, 金东海, 朱芳, 等. 湍流模型对压气机数值模拟精度的影响[J]. 航空动力学报, 2010, 25(12):2683-2689. YIN S, JIN D H, ZHU F, et al. Influence of turbulence models on simulation of a compressor[J]. Journal of Aerospace Power,2010,25(12):2683-2689.
[22] DUNHAM J. CFD validation for propulsion system components[R]. Neuilly-Sur-Seine,France:AGARD,Report No.AR-355,1998:1-84.
[23] DENTON J D. Lessons from Rotor 37[J]. Journal of Thermal Science,1997,6(1):1-13.
[1] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
[2] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[3] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[4] 卢汉桥, 李玉龙, 余啸, 龙维峰, 江建锋. 回流冷却与等温时效过程中Sn-35Bi-1Ag/Ni-P/Cu焊点组织演变[J]. 材料工程, 2018, 46(6): 95-100.
[5] 宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
[6] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[7] 鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
[8] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[9] 董伟, 李文畅, 许富民, 韩阳, 张伟. 单分散铁基Fe60Ni7.5Mo7.5P10C10B5金属玻璃球形粒子的制备及评价[J]. 材料工程, 2018, 46(10): 30-36.
[10] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程, 2018, 46(10): 1-8.
[11] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[12] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[13] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[14] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5.
[15] 吕滨江, 彭建, 梁鹏, 王进. 冷却速率对Mg-4.4Zn-0.3Zr-0.4Y变形镁合金组织和性能的影响[J]. 材料工程, 2016, 44(9): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn