Carbon-based/carbonyl iron composite microwave absorption materials have become a hot topic in recent years because of the combination of their respective advantages and unique physical and chemical characteristic and good absorbing properties. In this paper, the most recent and important research advances in carbon-based/carbonyl iron composite microwave absorption materials were reviewed. Firstly, the recent research of property improving of carbonyl iron itself was introduced. Then, the research achievements of carbon-based/carbonyl iron composite microwave absorption materials were summarized in six major categories, graphene/carbonyl iron microwave absorption materials, carbon nanotubes/carbonyl iron microwave absorption materials, carbon fibre/carbonyl iron microwave absorption materials, carbon black/carbonyl iron microwave absorption materials, graphite/carbonyl iron microwave absorption materials and the other composites were reviewed in detail. Finally, the performance control and lightweight of carbon-based/carbonyl iron composite microwave absorption materials were pointed out, and its development prospect in broadband stealth was prospected.
KONG L B , LI Z W , LIU L , et al. Recent progress in some composite materials and structures for specific electromagnetic applications[J]. International Materials Reviews, 2013, 58 (4): 203- 259.
doi: 10.1179/1743280412Y.0000000011
2
ZHU M , DIAO G . Review on the progress in synthesis and application of magnetic carbon nanocomposites[J]. Nanoscale, 2011, 3 (7): 2748- 2767.
doi: 10.1039/c1nr10165j
LIU Y , LIU X X , WANG X J . Research progress in ferrite based core-shell structured composite microwave absorb materials[J]. Journal of Materials Engineering, 2014, (7): 98- 106.
4
PATON K R , WINDLE A H . Efficient microwave energy absorption by carbon nanotubes[J]. Carbon, 2008, 46 (14): 1935- 1941.
doi: 10.1016/j.carbon.2008.08.001
5
XU Y , YUAN L , ZHANG D . Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule[J]. Journal of Physics D:Applied Physics, 2016, 49 (15): 155001.
doi: 10.1088/0022-3727/49/15/155001
6
CAO M , HAN C , WANG X , et al. Graphene nanohybrids:excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Che-mistry C, 2018, 6 (17): 4586- 4602.
doi: 10.1039/C7TC05869A
7
WEN F , ZHANG F , LIU Z . Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. The Journal of Physical Chemistry C, 2011, 115 (29): 14025- 14030.
doi: 10.1021/jp202078p
8
WANG X , ZHANG B , ZHANG W , et al. Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance[J]. Scientific Reports, 2017, 7 (1): 1584.
doi: 10.1038/s41598-017-01529-2
9
WANG X , MA T , SHU J , et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal, 2018, 332, 321- 330.
doi: 10.1016/j.cej.2017.09.101
10
LU M , CAO M , CHEN Y , et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes:a smart absorber prototype varying temperature to tune intensities[J]. ACS Applied Materials & Interfaces, 2015, 7 (34): 19408- 19415.
11
MOVASSAGH-ALANAGH F , BORDBAR K A , SALIMK-HANI H . Improvement in magnetic and microwave absorption properties of nano-Fe3O4@CFs composites using a modified multi-step EPD process[J]. Applied Surface Science, 2017, 420, 726- 739.
doi: 10.1016/j.apsusc.2017.05.207
12
FENG J , HOU Y , WANG Y , et al. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9 (16): 14103- 14111.
13
ZHANG K , GAO X , ZHANG Q , et al. Preparation and microwave absorption properties of asphalt carbon coated reduced graphene oxide/magnetic CoFe2O4 hollow particles modified multi-wall carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723, 912- 921.
doi: 10.1016/j.jallcom.2017.06.327
14
ZHANG Y , WANG X , CAO M . Confinedly implanted NiFe2O4-rGO:cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2018, 11 (3): 1426- 1436.
doi: 10.1007/s12274-017-1758-1
15
MA J , WANG X , CAO W , et al. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures[J]. Chemical Engineering Journal, 2018, 339, 487- 498.
doi: 10.1016/j.cej.2018.01.152
16
MAŁECKI P , KOLMAN K , PIGŁOWSKI J , et al. Sol-gel method as a way of carbonyl iron powder surface modification for interaction improvement[J]. Journal of Solid State Chemistry, 2015, 226, 224- 230.
doi: 10.1016/j.jssc.2015.03.002
17
REN X , CHENG Y . Electromagnetic and microwave absorbing properties of carbonyl iron/BaTiO3 composite absorber for matched load of isolator[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 293- 296.
doi: 10.1016/j.jmmm.2015.05.074
LIU Y F , LI L X , WANG Y Y , et al. Corrosion resistance and wave absorbing property of carbonyl iron powder coating with alumina by atomic layer deposition[J]. Journal of Inorganic Materials, 2017, 32 (7): 751- 757.
JING H X , LI Q L , YE Y , et al. Preparation and microwave absorbing properties of Fe(CO)5/BaTiO3 composites[J]. Journal of Materials Engineering, 2015, 43 (7): 38- 42.
20
QING Y , ZHOU W , LUO F , et al. Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings[J]. Journal of Magnetism and Magnetic Materials, 2009, 321 (1): 25- 28.
21
WEN F , ZUO W , YI H , et al. Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability[J]. Physica B:Condensed Matter, 2009, 404 (20): 3567- 3570.
doi: 10.1016/j.physb.2009.06.001
22
LONG C , XU B C , HAN C Z , et al. Flaky core-shell particles of iron@iron oxides for broadband microwave absorbers in S and C bands[J]. Journal of Alloys and Compounds, 2017, 709, 735- 741.
doi: 10.1016/j.jallcom.2017.03.197
23
YIN C , FAN J , BAI L , et al. Microwave absorption and antioxidation properties of flaky carbonyl iron passivated with carbon dioxide[J]. Journal of Magnetism and Magnetic Materials, 2013, 340, 65- 69.
doi: 10.1016/j.jmmm.2013.03.038
24
ZHOU Y , ZHOU W , LI R , et al. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating[J]. Journal of Alloys and Compounds, 2015, 637, 10- 15.
doi: 10.1016/j.jallcom.2015.03.014
25
KANG Y , HUANG Y , YANG R , et al. Synthesis and properties of core-shell structured Fe(CO)5/SiO2 composites[J]. Journal of Magnetism and Magnetic Materials, 2016, 399, 149- 154.
doi: 10.1016/j.jmmm.2015.09.061
26
WANG H , ZHU D , ZHOU W , et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2015, 375, 111- 116.
doi: 10.1016/j.jmmm.2014.09.061
27
LI J , FENG W J , WANG J S , et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 82- 87.
doi: 10.1016/j.jmmm.2015.05.049
28
ZHANG W , BIE S , CHEN H , et al. Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 com-posite[J]. Journal of Magnetism and Magnetic Materials, 2014, 358/359, 1- 4.
doi: 10.1016/j.jmmm.2014.01.033
GUO F , DU H L , QU S B , et al. Oxidation resistance and microwave absorption property of core shell urchin-like ZnO/carbonyl iron powder composite particles[J]. Chinese Journal of Inorganic Chemistry, 2015, 31 (4): 755- 760.
30
WU X , LUO H , WAN Y . Preparation of SnO2-coated carbonyl iron flaky composites with enhanced microwave absorption properties[J]. Materials Letters, 2013, 92, 139- 142.
doi: 10.1016/j.matlet.2012.10.093
31
TANG J , MA L , HUO Q , et al. The influence of PVP on the synthesis and electromagnetic properties of PANI/PVP/CIP composites[J]. Polymer Composites, 2015, 36 (10): 1799- 1806.
doi: 10.1002/pc.23086
32
TANG J , MA L , TIAN N , et al. Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites[J]. Materials Science and Engineering:B, 2014, 186, 26- 32.
doi: 10.1016/j.mseb.2014.02.003
WANG X Q , XU J X , HUANG D Q , et al. Synthesis and properties of CIP@PANI composite powders for anticorrosion and microwave-absorbing application[J]. Journal of Materials Engineering, 2014, (11): 90- 96.
doi: 10.11868/j.issn.1001-4381.2014.11.016
34
SUI M , LÜ X , XIE A , et al. The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polyp-yrrole (CIP@PPy) aerogel composites for excellent microwave absorption[J]. Synthetic Metals, 2015, 210, 156- 164.
doi: 10.1016/j.synthmet.2015.09.025
35
SONG Z , DENG L , XIE J , et al. Synthesis, dielectric, and microwave absorption properties of flake carbonyl iron particles coated with nanostructure polymer[J]. Surface and Interface Analysis, 2014, 46 (2): 77- 82.
36
KHANI O , SHOUSHTARI M Z , ACKLAND K , et al. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials, 2017, 428, 28- 35.
doi: 10.1016/j.jmmm.2016.12.010
37
XU Y , YUAN L , WANG X , et al. Two-step milling on the carbonyl iron particles and optimizing on the composite absorption[J]. Journal of Alloys and Compounds, 2016, 676, 251- 259.
doi: 10.1016/j.jallcom.2016.03.192
38
QIAO L , HAN R , WANG T , et al. Greatly enhanced microwave absorbing properties of planar anisotropy carbonyl-iron particle composites[J]. Journal of Magnetism and Magnetic Materials, 2015, 375, 100- 105.
doi: 10.1016/j.jmmm.2014.09.015
39
ABSHINOVA M A , LI Z W . Effect of milling time on dynamic permeability values of reduced carbonyl iron filled composites[J]. Journal of Magnetism and Magnetic Materials, 2014, 369, 147- 154.
doi: 10.1016/j.jmmm.2014.06.036
40
WANG W , GUO J , LONG C , et al. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption[J]. Journal of Alloys and Compounds, 2015, 637, 106- 111.
doi: 10.1016/j.jallcom.2015.02.220
TONG G X , GUAN J G , FAN X A , et al. Controllable preparation and growth mechanism of polycrystalline iron fibers induced by carrier gas flow[J]. Chinese Journal of Inorganic Chemistry, 2008, 24 (2): 270- 274.
doi: 10.3321/j.issn:1001-4861.2008.02.018
TONG G X , GUAN J G , FAN X A , et al. Influences of pyrolysis temperature on static magnetic and microwave electro-magnetic properties of polycrystalline iron fibers[J]. Acta Metallurgica Sinica, 2008, 44 (7): 867- 870.
doi: 10.3321/j.issn:0412-1961.2008.07.019
LI X L , YANG D F . Preparation of nanocrystalline iron of their electromagnetic fibers and measurement parameters[J]. Journal of Taiyuan University of Technology, 2012, 43 (1): 42- 46.
doi: 10.3969/j.issn.1007-9432.2012.01.011
HE J , HU Z W , DENG L W , et al. In-situ surface oxidation and microwave absorbing properties of polycrystalline iron fibers[J]. Mining and Metallurgical Engineering, 2016, 36 (3): 98- 101.
doi: 10.3969/j.issn.0253-6099.2016.03.026
45
YIN C , CAO Y , FAN J , et al. Synthesis of hollow carbonyl iron microspheres via pitting corrosion method and their microwave absorption properties[J]. Applied Surface Science, 2013, 270, 432- 438.
doi: 10.1016/j.apsusc.2013.01.044
YANG F L , HOU X Z , ZHENG K , et al. Effect of carbonyl iron powder morphology on the absorption properties of microwave[J]. Journal of Chongqing University, 2017, 40 (10): 53- 59.
doi: 10.11835/j.issn.1000-582X.2017.10.006
47
LI J , HUANG H , ZHOU Y , et al. Research progress of graphene-based microwave absorbing materials in the last decade[J]. Journal of Materials Research, 2017, 32 (7): 1213- 1230.
doi: 10.1557/jmr.2017.80
HUANG Q H , ZHANG B S , TANG D M , et al. Synthesis and characteristics of graphene-Fe@Fe3O4 nano-composites materials[J]. Chinese Journal of Inorganic Chemistry, 2012, 28 (10): 2077- 2082.
49
XU Y , LUO J , YAO W , et al. Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties[J]. Journal of Alloys and Compounds, 2015, 636, 310- 316.
doi: 10.1016/j.jallcom.2015.02.196
50
WENG X , LV X , LI B , et al. One-pot preparation of reduced graphene oxide/carbonyl iron/polyvinyl pyrrolidone ternary nanocomposite and its synergistic microwave absorbing properties[J]. Materials Letters, 2017, 188, 280- 283.
doi: 10.1016/j.matlet.2016.10.111
51
WENG X , LI B , ZHANG Y , et al. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties[J]. Journal of Alloys and Compounds, 2017, 695, 508- 519.
doi: 10.1016/j.jallcom.2016.11.083
52
CHEN C , LIANG W , NIEN Y , et al. Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites[J]. Materials Research Bulletin, 2017, 96, 81- 85.
doi: 10.1016/j.materresbull.2017.01.045
53
ZHU Z , SUN X , XUE H , et al. Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2014, 2 (32): 6582- 6591.
doi: 10.1039/C4TC00757C
54
王洁萱.石墨烯复合吸波剂的制备及电磁防护性能研究[D].北京: 北京理工大学, 2015.
54
WANG J X. Research on synthesis of graphene composites and their electromagnetic shielding performance[D]. Beijing: Beijing Institute of Technology, 2015.
55
李国显.石墨烯/磁性纳米复合材料的制备及吸波性能[D].南京: 南京航空航天大学, 2012.
55
LI G X. Properties of graphene/magnetic-particle nanocomposite materials[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2012.
56
QING Y , MIN D , ZHOU Y , et al. Graphene nanosheet and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber[J]. Carbon, 2015, 86, 98- 107.
doi: 10.1016/j.carbon.2015.01.002
LIU G , WANG L Y , CHENG J L , et al. Progress in research on carbon nanotubes microwave absorbers[J]. Journal of Materials Engineering, 2015, 43 (1): 104- 112.
58
LIU Y , LIU X , WANG X . Preparation of multi-walled carbon nanotube-Fe composites and their application as light weight and broadband electromagnetic wave absorbers[J]. Chinese Physics B, 2014, 23 (11): 117705.
doi: 10.1088/1674-1056/23/11/117705
59
LIU T , ZHOU L , ZHENG D , et al. Absorption property of C@CIPs composites by the mechanical milling process[J]. Applied Physics A, 2017, 123 (9): 565.
doi: 10.1007/s00339-017-1175-z
60
XU Y , ZHANG D , CAI J , et al. Effects of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with carbonyl iron particles[J]. Journal of Materials Science & Technology, 2012, 28 (1): 34- 40.
61
XU Y , YUAN L , CAI J , et al. Smart absorbing property of com-posites with MWCNTs and carbonyl iron as the filler[J]. Journal of Magnetism and Magnetic Materials, 2013, 343, 239- 244.
doi: 10.1016/j.jmmm.2013.04.051
62
QING Y , ZHOU W , HUANG S , et al. Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone[J]. Journal of Alloys and Compounds, 2014, 583, 471- 475.
doi: 10.1016/j.jallcom.2013.09.002
63
QING Y , ZHOU W , LUO F , et al. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber[J]. Carbon, 2010, 48 (14): 4074- 4080.
doi: 10.1016/j.carbon.2010.07.014
64
GAO Y , GAO X , LI J , et al. Improved microwave absorbing property provided by the filler's alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites[J]. Composites Science and Technology, 2018, 158, 175- 185.
doi: 10.1016/j.compscitech.2017.11.029
65
TONG G , WU W , HUA Q , et al. Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18GHz ranges[J]. Journal of Alloys and Compounds, 2011, 509 (2): 451- 456.
doi: 10.1016/j.jallcom.2010.09.055
66
LI Y , CHEN C , PAN X , et al. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin[J]. Physica B:Condensed Matter, 2009, 404 (8/11): 1343- 1346.
LI B P , WANG C G , WANG W . Progress of electromagnetic wave absorbing materials based on carbon[J]. Materials Review, 2012, 26 (7): 9- 14.
doi: 10.3969/j.issn.1005-023X.2012.07.003
68
LIU Y , LIU X , LI R , et al. Design and fabrication of carbon fiber/carbonyl iron core-shell structure composites as high-performance microwave absorbers[J]. RSC Advances, 2015, 5 (12): 8713- 8720.
doi: 10.1039/C4RA15654D
LIU Y , LIU X X , CHEN X , et al. Preparation by MOCVD and microwave absorbing properties of CF@Fe[J]. Journal of Inorganic Materials, 2013, 28 (12): 1328- 1332.
70
ZHANG Z , LIU X , ZHANG H , et al. Electromagnetic and microwave absorption properties of carbon fibers coated with carbonyl iron[J]. Journal of Materials Science:Materials in Electronics, 2015, 26 (9): 6518- 6525.
doi: 10.1007/s10854-015-3247-1
71
SALIMKHANI H , PALMEH P , KHIABANI A B , et al. Electrophoretic deposition of spherical carbonyl iron particles on carbon fibers as a microwave absorbent composite[J]. Surfaces and Interfaces, 2016, 5, 1- 7.
doi: 10.1016/j.surfin.2016.09.004
72
YOUH M , WU H , LIN W , et al. A carbonyl iron/carbon fiber material for electromagnetic wave absorption[J]. Journal of Nanoscience and Nanotechnology, 2011, 11 (3): 2315- 2320.
doi: 10.1166/jnn.2011.3584
73
QING Y C , ZHOU W C , JIA S , et al. Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings[J]. Applied Physics A, 2010, 100 (4): 1177- 1181.
doi: 10.1007/s00339-010-5738-5
74
MIN D , ZHOU W , QING Y , et al. Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber[J]. Journal of Alloys and Compounds, 2018, 744, 629- 636.
doi: 10.1016/j.jallcom.2018.02.076
WANG Z J , LI K Z , WANG C , et al. Wave-absorbing properties of carbonyl iron powder/carbon fiber reinforced cement-based composites[J]. Journal of the Chinese Ceramic Society, 2011, 39 (1): 69- 74.
76
AFGHAHI S S S , MIRZAZADEH A , JAFARIAN M , et al. A new multicomponent material based on carbonyl iron/carbon nanofiber/lanthanum-strontium-manganite as microwave absor-bers in the range of 8-12GHz[J]. Ceramics International, 2016, 42 (8): 9697- 9702.
doi: 10.1016/j.ceramint.2016.03.058
77
DUAN Y P , WANG L , LIU Z , et al. Microwave properties of double layer absorber reinforced with carbon fibre powders[J]. Plastics, Rubber and Composites, 2013, 42 (2): 82- 87.
doi: 10.1179/1743289812Y.0000000030
78
LIU L , DUAN Y , MA L , et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black[J]. Applied Surface Science, 2010, 257 (3): 842- 846.
doi: 10.1016/j.apsusc.2010.07.078
79
QING Y , ZHOU W , JIA S , et al. Dielectric properties of carbon black and carbonyl iron filled epoxy-silicone resin coating[J]. Journal of Materials Science, 2010, 45 (7): 1885- 1888.
doi: 10.1007/s10853-009-4173-5
80
SHEN X , XIE S , GUO J , et al. Microwave absorbing properties of ternary linear low-density polyethylene/carbonyl iron powder/carbon black composites[J]. Journal of Applied Polymer Science, 2009, 114 (6): 3434- 3439.
doi: 10.1002/app.30666
81
LI X , ZHANG Y , CHEN J , et al. Composite coatings reinforced with carbonyl iron nanoparticles:preparation and microwave absorbing properties[J]. Materials Technology, 2014, 29 (1): 57- 64.
doi: 10.1179/1753555713Y.0000000096
82
PINHO M S , Da COSTA L R , SILVA M R D , et al. Microwave absorption of carbon black and carbonyl iron composites with polychloroprene[J]. Materials Technology, 2013, 21 (1): 27- 31.
83
MIN D , ZHOU W , QING Y , et al. Enhanced microwave absorption properties of oriented carbonyl iron/carbon black composite induced by shear force[J]. Journal of Electronic Materials, 2017, 46 (8): 4903- 4911.
doi: 10.1007/s11664-017-5493-x
84
WANG M , DUAN Y , LIU S , et al. Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials, 2009, 321 (20): 3442- 3446.
doi: 10.1016/j.jmmm.2009.06.040
85
CHEN L , DUAN Y , LIU L , et al. Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings[J]. Materials & Design, 2011, 32 (2): 570- 574.
CHEN X G , YE Y , CHENG J P . Recent progress in electro-magnetic wave absorbers[J]. Journal of Inorganic Materials, 2011, 26 (5): 449- 457.
87
WOO S , YOO C , KIM H , et al. Development of CIP/graphite composite additives for electromagnetic wave absorption applications[J]. Electronic Materials Letters, 2017, 13 (5): 398- 405.
doi: 10.1007/s13391-017-7003-y
88
XU Y , YAN Z , ZHANG D . Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite[J]. Applied Surface Science, 2015, 356, 1032- 1038.
doi: 10.1016/j.apsusc.2015.08.162
89
TAN Y , TANG J , DENG A , et al. Magnetic properties and microwave absorption properties of chlorosulfonated polye-thylene matrices containing graphite and carbonyl-iron powder[J]. Journal of Magnetism and Magnetic Materials, 2013, 326, 41- 44.
doi: 10.1016/j.jmmm.2012.08.021
90
XU Y , ZHANG D , CAI J , et al. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet[J]. Journal of Magnetism and Magnetic Materials, 2013, 327, 82- 86.
doi: 10.1016/j.jmmm.2012.09.045
91
DENG J L , FENG B . Carbonyl iron/graphite double-layer structural absorbing composite[J]. Advanced Materials Research, 2012, 557/559, 390- 393.
doi: 10.4028/www.scientific.net/AMR.557-559.390
92
LI B P , WANG C G , WANG W , et al. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon[J]. Journal of Magnetism and Magnetic Materials, 2014, 365, 40- 44.
doi: 10.1016/j.jmmm.2014.01.015
LI B P , WANG C G , WANG W , et al. Electromagnetic wave absorption properties of amorphous carbon/magnetic particle composites[J]. Functional Materials, 2012, 43 (14): 1941- 1944.
doi: 10.3969/j.issn.1001-9731.2012.14.030
94
WU H , WANG L , WANG Y , et al. Enhanced microwave absorbing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites[J]. Materials Science and Engineering:B, 2012, 177 (6): 476- 482.
doi: 10.1016/j.mseb.2012.02.008