Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (12): 43-54    DOI: 10.11868/j.issn.1001-4381.2018.000220
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳基/羰基铁复合吸波材料的研究进展
葛超群, 汪刘应(), 刘顾
火箭军工程大学, 西安 710025
Research progress in carbon-based/carbonyl iron composite microwave absorption materials
Chao-qun GE, Liu-ying WANG(), Gu LIU
Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(3629 KB)   HTML ( 14 )  
输出: BibTeX | EndNote (RIS)      
摘要 

碳基/羰基铁复合吸波材料结合了各自优势,具有独特的物理化学特性和良好的吸波性能,成为近年来研究热点之一。本文结合国内外最新研究成果,介绍了羰基铁吸波剂自身改性的研究现状,将碳基/羰基铁复合吸波材料的研究成果系统归纳为6大类,即石墨烯/羰基铁复合吸波材料、碳纳米管/羰基铁复合吸波材料、碳纤维/羰基铁复合吸波材料、炭黑/羰基铁复合吸波材料、石墨/羰基铁复合吸波材料以及其他碳材料与羰基铁的复合吸波材料,并进行了详细介绍。最后,指出了碳基/羰基铁复合吸波材料未来研究亟待解决的性能调控和轻量化等问题,展望了其在宽频隐身等方面的发展前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛超群
汪刘应
刘顾
关键词 羰基铁石墨烯碳纳米管碳纤维吸波材料    
Abstract

Carbon-based/carbonyl iron composite microwave absorption materials have become a hot topic in recent years because of the combination of their respective advantages and unique physical and chemical characteristic and good absorbing properties. In this paper, the most recent and important research advances in carbon-based/carbonyl iron composite microwave absorption materials were reviewed. Firstly, the recent research of property improving of carbonyl iron itself was introduced. Then, the research achievements of carbon-based/carbonyl iron composite microwave absorption materials were summarized in six major categories, graphene/carbonyl iron microwave absorption materials, carbon nanotubes/carbonyl iron microwave absorption materials, carbon fibre/carbonyl iron microwave absorption materials, carbon black/carbonyl iron microwave absorption materials, graphite/carbonyl iron microwave absorption materials and the other composites were reviewed in detail. Finally, the performance control and lightweight of carbon-based/carbonyl iron composite microwave absorption materials were pointed out, and its development prospect in broadband stealth was prospected.

Key wordscarbonyl iron    graphene    carbon nanotube    carbon fibre    microwave absorption material
收稿日期: 2018-03-05      出版日期: 2019-12-17
中图分类号:  TB34  
基金资助:新世纪优秀人才支持计划(NCET-11-0868);陕西省重点科技创新团队资助项目(2014KCT-03);陕西省自然科学基金资助项目(2014JM2-5084)
通讯作者: 汪刘应     E-mail: wangliuying1971@163.com
作者简介: 汪刘应(1971—), 男, 教授, 博士, 研究方向为功能材料与涂层技术, 联系地址:陕西省西安市灞桥区同心路2号火箭军工程大学(710025), E-mail:wangliuying1971@163.com
引用本文:   
葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
Chao-qun GE, Liu-ying WANG, Gu LIU. Research progress in carbon-based/carbonyl iron composite microwave absorption materials. Journal of Materials Engineering, 2019, 47(12): 43-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000220      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/43
Fig.1  不同形貌的羰基铁粒子SEM图
(a)片状[40];(b)纤维状[44];(c)壳状[45];(d)树枝状[46]
Fig.2  FCI/RGO/PVP复合材料制备过程及吸波机理示意图(a),厚度为2.5mm时FCI,FCI/GO,FCI/RGO,FCI/RGO/PVP复合材料的反射率(b)[51]
Fig.3  RGO/SCI复合材料碳桥效应吸波机理示意图[53]
Fig.4  填充FCI/CNTs的复合材料压缩应变示意图[61]
Fig.5  CNTs和FCI颗粒填充环氧有机硅树脂复合物的断裂表面SEM图(箭头所示为CNTs)(a),CNTs,FCI和环氧有机硅树脂基体组成的三维网络结构示意图(b),填充0.5%CNTs和50%FCI的复合材料在不同厚度下的反射率(c)[63]
Fig.6  CF/CI复合材料制备过程示意图(a), SEM图(b),在不同厚度下的吸波性能(c)和电磁波的传输示意图(d)[68]
Fig.7  石墨/羰基铁复合材料制备过程示意图[87]
1 KONG L B , LI Z W , LIU L , et al. Recent progress in some composite materials and structures for specific electromagnetic applications[J]. International Materials Reviews, 2013, 58 (4): 203- 259.
doi: 10.1179/1743280412Y.0000000011
2 ZHU M , DIAO G . Review on the progress in synthesis and application of magnetic carbon nanocomposites[J]. Nanoscale, 2011, 3 (7): 2748- 2767.
doi: 10.1039/c1nr10165j
3 刘渊, 刘祥萱, 王煊军. 铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程, 2014, (7): 98- 106.
3 LIU Y , LIU X X , WANG X J . Research progress in ferrite based core-shell structured composite microwave absorb materials[J]. Journal of Materials Engineering, 2014, (7): 98- 106.
4 PATON K R , WINDLE A H . Efficient microwave energy absorption by carbon nanotubes[J]. Carbon, 2008, 46 (14): 1935- 1941.
doi: 10.1016/j.carbon.2008.08.001
5 XU Y , YUAN L , ZHANG D . Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule[J]. Journal of Physics D:Applied Physics, 2016, 49 (15): 155001.
doi: 10.1088/0022-3727/49/15/155001
6 CAO M , HAN C , WANG X , et al. Graphene nanohybrids:excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Che-mistry C, 2018, 6 (17): 4586- 4602.
doi: 10.1039/C7TC05869A
7 WEN F , ZHANG F , LIU Z . Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. The Journal of Physical Chemistry C, 2011, 115 (29): 14025- 14030.
doi: 10.1021/jp202078p
8 WANG X , ZHANG B , ZHANG W , et al. Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance[J]. Scientific Reports, 2017, 7 (1): 1584.
doi: 10.1038/s41598-017-01529-2
9 WANG X , MA T , SHU J , et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal, 2018, 332, 321- 330.
doi: 10.1016/j.cej.2017.09.101
10 LU M , CAO M , CHEN Y , et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes:a smart absorber prototype varying temperature to tune intensities[J]. ACS Applied Materials & Interfaces, 2015, 7 (34): 19408- 19415.
11 MOVASSAGH-ALANAGH F , BORDBAR K A , SALIMK-HANI H . Improvement in magnetic and microwave absorption properties of nano-Fe3O4@CFs composites using a modified multi-step EPD process[J]. Applied Surface Science, 2017, 420, 726- 739.
doi: 10.1016/j.apsusc.2017.05.207
12 FENG J , HOU Y , WANG Y , et al. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9 (16): 14103- 14111.
13 ZHANG K , GAO X , ZHANG Q , et al. Preparation and microwave absorption properties of asphalt carbon coated reduced graphene oxide/magnetic CoFe2O4 hollow particles modified multi-wall carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723, 912- 921.
doi: 10.1016/j.jallcom.2017.06.327
14 ZHANG Y , WANG X , CAO M . Confinedly implanted NiFe2O4-rGO:cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2018, 11 (3): 1426- 1436.
doi: 10.1007/s12274-017-1758-1
15 MA J , WANG X , CAO W , et al. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures[J]. Chemical Engineering Journal, 2018, 339, 487- 498.
doi: 10.1016/j.cej.2018.01.152
16 MAŁECKI P , KOLMAN K , PIGŁOWSKI J , et al. Sol-gel method as a way of carbonyl iron powder surface modification for interaction improvement[J]. Journal of Solid State Chemistry, 2015, 226, 224- 230.
doi: 10.1016/j.jssc.2015.03.002
17 REN X , CHENG Y . Electromagnetic and microwave absorbing properties of carbonyl iron/BaTiO3 composite absorber for matched load of isolator[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 293- 296.
doi: 10.1016/j.jmmm.2015.05.074
18 刘彦峰, 李磊削, 王韫宇, 等. 原子层沉积氧化铝包覆羰基铁粉的抗腐蚀性及吸波性能[J]. 无机材料学报, 2017, 32 (7): 751- 757.
18 LIU Y F , LI L X , WANG Y Y , et al. Corrosion resistance and wave absorbing property of carbonyl iron powder coating with alumina by atomic layer deposition[J]. Journal of Inorganic Materials, 2017, 32 (7): 751- 757.
19 景红霞, 李巧玲, 叶云, 等. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, 43 (7): 38- 42.
19 JING H X , LI Q L , YE Y , et al. Preparation and microwave absorbing properties of Fe(CO)5/BaTiO3 composites[J]. Journal of Materials Engineering, 2015, 43 (7): 38- 42.
20 QING Y , ZHOU W , LUO F , et al. Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings[J]. Journal of Magnetism and Magnetic Materials, 2009, 321 (1): 25- 28.
21 WEN F , ZUO W , YI H , et al. Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability[J]. Physica B:Condensed Matter, 2009, 404 (20): 3567- 3570.
doi: 10.1016/j.physb.2009.06.001
22 LONG C , XU B C , HAN C Z , et al. Flaky core-shell particles of iron@iron oxides for broadband microwave absorbers in S and C bands[J]. Journal of Alloys and Compounds, 2017, 709, 735- 741.
doi: 10.1016/j.jallcom.2017.03.197
23 YIN C , FAN J , BAI L , et al. Microwave absorption and antioxidation properties of flaky carbonyl iron passivated with carbon dioxide[J]. Journal of Magnetism and Magnetic Materials, 2013, 340, 65- 69.
doi: 10.1016/j.jmmm.2013.03.038
24 ZHOU Y , ZHOU W , LI R , et al. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating[J]. Journal of Alloys and Compounds, 2015, 637, 10- 15.
doi: 10.1016/j.jallcom.2015.03.014
25 KANG Y , HUANG Y , YANG R , et al. Synthesis and properties of core-shell structured Fe(CO)5/SiO2 composites[J]. Journal of Magnetism and Magnetic Materials, 2016, 399, 149- 154.
doi: 10.1016/j.jmmm.2015.09.061
26 WANG H , ZHU D , ZHOU W , et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2015, 375, 111- 116.
doi: 10.1016/j.jmmm.2014.09.061
27 LI J , FENG W J , WANG J S , et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J]. Journal of Magnetism and Magnetic Materials, 2015, 393, 82- 87.
doi: 10.1016/j.jmmm.2015.05.049
28 ZHANG W , BIE S , CHEN H , et al. Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 com-posite[J]. Journal of Magnetism and Magnetic Materials, 2014, 358/359, 1- 4.
doi: 10.1016/j.jmmm.2014.01.033
29 郭飞, 杜红亮, 屈绍波, 等. 海胆状氧化锌/羰基铁粉核壳结构复合粒子的抗氧化及吸波性能[J]. 无机化学学报, 2015, 31 (4): 755- 760.
29 GUO F , DU H L , QU S B , et al. Oxidation resistance and microwave absorption property of core shell urchin-like ZnO/carbonyl iron powder composite particles[J]. Chinese Journal of Inorganic Chemistry, 2015, 31 (4): 755- 760.
30 WU X , LUO H , WAN Y . Preparation of SnO2-coated carbonyl iron flaky composites with enhanced microwave absorption properties[J]. Materials Letters, 2013, 92, 139- 142.
doi: 10.1016/j.matlet.2012.10.093
31 TANG J , MA L , HUO Q , et al. The influence of PVP on the synthesis and electromagnetic properties of PANI/PVP/CIP composites[J]. Polymer Composites, 2015, 36 (10): 1799- 1806.
doi: 10.1002/pc.23086
32 TANG J , MA L , TIAN N , et al. Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites[J]. Materials Science and Engineering:B, 2014, 186, 26- 32.
doi: 10.1016/j.mseb.2014.02.003
33 汪晓芹, 徐金鑫, 黄大庆, 等. 羰基铁粉@聚苯胺防腐吸波粉体的制备与性能[J]. 材料工程, 2014, (11): 90- 96.
doi: 10.11868/j.issn.1001-4381.2014.11.016
33 WANG X Q , XU J X , HUANG D Q , et al. Synthesis and properties of CIP@PANI composite powders for anticorrosion and microwave-absorbing application[J]. Journal of Materials Engineering, 2014, (11): 90- 96.
doi: 10.11868/j.issn.1001-4381.2014.11.016
34 SUI M , LÜ X , XIE A , et al. The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polyp-yrrole (CIP@PPy) aerogel composites for excellent microwave absorption[J]. Synthetic Metals, 2015, 210, 156- 164.
doi: 10.1016/j.synthmet.2015.09.025
35 SONG Z , DENG L , XIE J , et al. Synthesis, dielectric, and microwave absorption properties of flake carbonyl iron particles coated with nanostructure polymer[J]. Surface and Interface Analysis, 2014, 46 (2): 77- 82.
36 KHANI O , SHOUSHTARI M Z , ACKLAND K , et al. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials, 2017, 428, 28- 35.
doi: 10.1016/j.jmmm.2016.12.010
37 XU Y , YUAN L , WANG X , et al. Two-step milling on the carbonyl iron particles and optimizing on the composite absorption[J]. Journal of Alloys and Compounds, 2016, 676, 251- 259.
doi: 10.1016/j.jallcom.2016.03.192
38 QIAO L , HAN R , WANG T , et al. Greatly enhanced microwave absorbing properties of planar anisotropy carbonyl-iron particle composites[J]. Journal of Magnetism and Magnetic Materials, 2015, 375, 100- 105.
doi: 10.1016/j.jmmm.2014.09.015
39 ABSHINOVA M A , LI Z W . Effect of milling time on dynamic permeability values of reduced carbonyl iron filled composites[J]. Journal of Magnetism and Magnetic Materials, 2014, 369, 147- 154.
doi: 10.1016/j.jmmm.2014.06.036
40 WANG W , GUO J , LONG C , et al. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption[J]. Journal of Alloys and Compounds, 2015, 637, 106- 111.
doi: 10.1016/j.jallcom.2015.02.220
41 童国秀, 官建国, 樊希安, 等. 气流诱导多晶铁纤维的可控制备及生长机理[J]. 无机化学学报, 2008, 24 (2): 270- 274.
doi: 10.3321/j.issn:1001-4861.2008.02.018
41 TONG G X , GUAN J G , FAN X A , et al. Controllable preparation and growth mechanism of polycrystalline iron fibers induced by carrier gas flow[J]. Chinese Journal of Inorganic Chemistry, 2008, 24 (2): 270- 274.
doi: 10.3321/j.issn:1001-4861.2008.02.018
42 童国秀, 官建国, 樊希安, 等. 热解温度对多晶铁纤维的静磁和微波电磁性能的影响[J]. 金属学报, 2008, 44 (7): 867- 870.
doi: 10.3321/j.issn:0412-1961.2008.07.019
42 TONG G X , GUAN J G , FAN X A , et al. Influences of pyrolysis temperature on static magnetic and microwave electro-magnetic properties of polycrystalline iron fibers[J]. Acta Metallurgica Sinica, 2008, 44 (7): 867- 870.
doi: 10.3321/j.issn:0412-1961.2008.07.019
43 李小莉, 杨东方. 纳米晶铁纤维的制备及其电磁参数的测量[J]. 太原理工大学学报, 2012, 43 (1): 42- 46.
doi: 10.3969/j.issn.1007-9432.2012.01.011
43 LI X L , YANG D F . Preparation of nanocrystalline iron of their electromagnetic fibers and measurement parameters[J]. Journal of Taiyuan University of Technology, 2012, 43 (1): 42- 46.
doi: 10.3969/j.issn.1007-9432.2012.01.011
44 贺君, 胡照文, 邓联文, 等. 多晶铁纤维表面原位氧化及其微波吸收性能[J]. 矿冶工程, 2016, 36 (3): 98- 101.
doi: 10.3969/j.issn.0253-6099.2016.03.026
44 HE J , HU Z W , DENG L W , et al. In-situ surface oxidation and microwave absorbing properties of polycrystalline iron fibers[J]. Mining and Metallurgical Engineering, 2016, 36 (3): 98- 101.
doi: 10.3969/j.issn.0253-6099.2016.03.026
45 YIN C , CAO Y , FAN J , et al. Synthesis of hollow carbonyl iron microspheres via pitting corrosion method and their microwave absorption properties[J]. Applied Surface Science, 2013, 270, 432- 438.
doi: 10.1016/j.apsusc.2013.01.044
46 杨芾藜, 侯兴哲, 郑可, 等. 羰基铁粉形貌对吸波性能的影响[J]. 重庆大学学报, 2017, 40 (10): 53- 59.
doi: 10.11835/j.issn.1000-582X.2017.10.006
46 YANG F L , HOU X Z , ZHENG K , et al. Effect of carbonyl iron powder morphology on the absorption properties of microwave[J]. Journal of Chongqing University, 2017, 40 (10): 53- 59.
doi: 10.11835/j.issn.1000-582X.2017.10.006
47 LI J , HUANG H , ZHOU Y , et al. Research progress of graphene-based microwave absorbing materials in the last decade[J]. Journal of Materials Research, 2017, 32 (7): 1213- 1230.
doi: 10.1557/jmr.2017.80
48 黄琪惠, 张豹山, 唐东明, 等. 石墨烯-Fe@Fe3O4纳米复合材料的制备及其电磁性能研究[J]. 无机化学学报, 2012, 28 (10): 2077- 2082.
48 HUANG Q H , ZHANG B S , TANG D M , et al. Synthesis and characteristics of graphene-Fe@Fe3O4 nano-composites materials[J]. Chinese Journal of Inorganic Chemistry, 2012, 28 (10): 2077- 2082.
49 XU Y , LUO J , YAO W , et al. Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties[J]. Journal of Alloys and Compounds, 2015, 636, 310- 316.
doi: 10.1016/j.jallcom.2015.02.196
50 WENG X , LV X , LI B , et al. One-pot preparation of reduced graphene oxide/carbonyl iron/polyvinyl pyrrolidone ternary nanocomposite and its synergistic microwave absorbing properties[J]. Materials Letters, 2017, 188, 280- 283.
doi: 10.1016/j.matlet.2016.10.111
51 WENG X , LI B , ZHANG Y , et al. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties[J]. Journal of Alloys and Compounds, 2017, 695, 508- 519.
doi: 10.1016/j.jallcom.2016.11.083
52 CHEN C , LIANG W , NIEN Y , et al. Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites[J]. Materials Research Bulletin, 2017, 96, 81- 85.
doi: 10.1016/j.materresbull.2017.01.045
53 ZHU Z , SUN X , XUE H , et al. Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2014, 2 (32): 6582- 6591.
doi: 10.1039/C4TC00757C
54 王洁萱.石墨烯复合吸波剂的制备及电磁防护性能研究[D].北京: 北京理工大学, 2015.
54 WANG J X. Research on synthesis of graphene composites and their electromagnetic shielding performance[D]. Beijing: Beijing Institute of Technology, 2015.
55 李国显.石墨烯/磁性纳米复合材料的制备及吸波性能[D].南京: 南京航空航天大学, 2012.
55 LI G X. Properties of graphene/magnetic-particle nanocomposite materials[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2012.
56 QING Y , MIN D , ZHOU Y , et al. Graphene nanosheet and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber[J]. Carbon, 2015, 86, 98- 107.
doi: 10.1016/j.carbon.2015.01.002
57 刘顾, 汪刘应, 程建良, 等. 碳纳米管吸波材料研究进展[J]. 材料工程, 2015, 43 (1): 104- 112.
57 LIU G , WANG L Y , CHENG J L , et al. Progress in research on carbon nanotubes microwave absorbers[J]. Journal of Materials Engineering, 2015, 43 (1): 104- 112.
58 LIU Y , LIU X , WANG X . Preparation of multi-walled carbon nanotube-Fe composites and their application as light weight and broadband electromagnetic wave absorbers[J]. Chinese Physics B, 2014, 23 (11): 117705.
doi: 10.1088/1674-1056/23/11/117705
59 LIU T , ZHOU L , ZHENG D , et al. Absorption property of C@CIPs composites by the mechanical milling process[J]. Applied Physics A, 2017, 123 (9): 565.
doi: 10.1007/s00339-017-1175-z
60 XU Y , ZHANG D , CAI J , et al. Effects of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with carbonyl iron particles[J]. Journal of Materials Science & Technology, 2012, 28 (1): 34- 40.
61 XU Y , YUAN L , CAI J , et al. Smart absorbing property of com-posites with MWCNTs and carbonyl iron as the filler[J]. Journal of Magnetism and Magnetic Materials, 2013, 343, 239- 244.
doi: 10.1016/j.jmmm.2013.04.051
62 QING Y , ZHOU W , HUANG S , et al. Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone[J]. Journal of Alloys and Compounds, 2014, 583, 471- 475.
doi: 10.1016/j.jallcom.2013.09.002
63 QING Y , ZHOU W , LUO F , et al. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber[J]. Carbon, 2010, 48 (14): 4074- 4080.
doi: 10.1016/j.carbon.2010.07.014
64 GAO Y , GAO X , LI J , et al. Improved microwave absorbing property provided by the filler's alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites[J]. Composites Science and Technology, 2018, 158, 175- 185.
doi: 10.1016/j.compscitech.2017.11.029
65 TONG G , WU W , HUA Q , et al. Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18GHz ranges[J]. Journal of Alloys and Compounds, 2011, 509 (2): 451- 456.
doi: 10.1016/j.jallcom.2010.09.055
66 LI Y , CHEN C , PAN X , et al. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin[J]. Physica B:Condensed Matter, 2009, 404 (8/11): 1343- 1346.
67 李斌鹏, 王成国, 王雯. 碳基吸波材料的研究进展[J]. 材料导报, 2012, 26 (7): 9- 14.
doi: 10.3969/j.issn.1005-023X.2012.07.003
67 LI B P , WANG C G , WANG W . Progress of electromagnetic wave absorbing materials based on carbon[J]. Materials Review, 2012, 26 (7): 9- 14.
doi: 10.3969/j.issn.1005-023X.2012.07.003
68 LIU Y , LIU X , LI R , et al. Design and fabrication of carbon fiber/carbonyl iron core-shell structure composites as high-performance microwave absorbers[J]. RSC Advances, 2015, 5 (12): 8713- 8720.
doi: 10.1039/C4RA15654D
69 刘渊, 刘祥萱, 陈鑫, 等. 碳纤维表面α-Fe的MOCVD生长制备及吸波性能研究[J]. 无机材料学报, 2013, 28 (12): 1328- 1332.
69 LIU Y , LIU X X , CHEN X , et al. Preparation by MOCVD and microwave absorbing properties of CF@Fe[J]. Journal of Inorganic Materials, 2013, 28 (12): 1328- 1332.
70 ZHANG Z , LIU X , ZHANG H , et al. Electromagnetic and microwave absorption properties of carbon fibers coated with carbonyl iron[J]. Journal of Materials Science:Materials in Electronics, 2015, 26 (9): 6518- 6525.
doi: 10.1007/s10854-015-3247-1
71 SALIMKHANI H , PALMEH P , KHIABANI A B , et al. Electrophoretic deposition of spherical carbonyl iron particles on carbon fibers as a microwave absorbent composite[J]. Surfaces and Interfaces, 2016, 5, 1- 7.
doi: 10.1016/j.surfin.2016.09.004
72 YOUH M , WU H , LIN W , et al. A carbonyl iron/carbon fiber material for electromagnetic wave absorption[J]. Journal of Nanoscience and Nanotechnology, 2011, 11 (3): 2315- 2320.
doi: 10.1166/jnn.2011.3584
73 QING Y C , ZHOU W C , JIA S , et al. Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings[J]. Applied Physics A, 2010, 100 (4): 1177- 1181.
doi: 10.1007/s00339-010-5738-5
74 MIN D , ZHOU W , QING Y , et al. Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber[J]. Journal of Alloys and Compounds, 2018, 744, 629- 636.
doi: 10.1016/j.jallcom.2018.02.076
75 王振军, 李克智, 王闯, 等. 羰基铁粉-碳纤维水泥基复合材料的吸波性能[J]. 硅酸盐学报, 2011, 39 (1): 69- 74.
75 WANG Z J , LI K Z , WANG C , et al. Wave-absorbing properties of carbonyl iron powder/carbon fiber reinforced cement-based composites[J]. Journal of the Chinese Ceramic Society, 2011, 39 (1): 69- 74.
76 AFGHAHI S S S , MIRZAZADEH A , JAFARIAN M , et al. A new multicomponent material based on carbonyl iron/carbon nanofiber/lanthanum-strontium-manganite as microwave absor-bers in the range of 8-12GHz[J]. Ceramics International, 2016, 42 (8): 9697- 9702.
doi: 10.1016/j.ceramint.2016.03.058
77 DUAN Y P , WANG L , LIU Z , et al. Microwave properties of double layer absorber reinforced with carbon fibre powders[J]. Plastics, Rubber and Composites, 2013, 42 (2): 82- 87.
doi: 10.1179/1743289812Y.0000000030
78 LIU L , DUAN Y , MA L , et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black[J]. Applied Surface Science, 2010, 257 (3): 842- 846.
doi: 10.1016/j.apsusc.2010.07.078
79 QING Y , ZHOU W , JIA S , et al. Dielectric properties of carbon black and carbonyl iron filled epoxy-silicone resin coating[J]. Journal of Materials Science, 2010, 45 (7): 1885- 1888.
doi: 10.1007/s10853-009-4173-5
80 SHEN X , XIE S , GUO J , et al. Microwave absorbing properties of ternary linear low-density polyethylene/carbonyl iron powder/carbon black composites[J]. Journal of Applied Polymer Science, 2009, 114 (6): 3434- 3439.
doi: 10.1002/app.30666
81 LI X , ZHANG Y , CHEN J , et al. Composite coatings reinforced with carbonyl iron nanoparticles:preparation and microwave absorbing properties[J]. Materials Technology, 2014, 29 (1): 57- 64.
doi: 10.1179/1753555713Y.0000000096
82 PINHO M S , Da COSTA L R , SILVA M R D , et al. Microwave absorption of carbon black and carbonyl iron composites with polychloroprene[J]. Materials Technology, 2013, 21 (1): 27- 31.
83 MIN D , ZHOU W , QING Y , et al. Enhanced microwave absorption properties of oriented carbonyl iron/carbon black composite induced by shear force[J]. Journal of Electronic Materials, 2017, 46 (8): 4903- 4911.
doi: 10.1007/s11664-017-5493-x
84 WANG M , DUAN Y , LIU S , et al. Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials, 2009, 321 (20): 3442- 3446.
doi: 10.1016/j.jmmm.2009.06.040
85 CHEN L , DUAN Y , LIU L , et al. Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings[J]. Materials & Design, 2011, 32 (2): 570- 574.
86 陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报, 2011, 26 (5): 449- 457.
86 CHEN X G , YE Y , CHENG J P . Recent progress in electro-magnetic wave absorbers[J]. Journal of Inorganic Materials, 2011, 26 (5): 449- 457.
87 WOO S , YOO C , KIM H , et al. Development of CIP/graphite composite additives for electromagnetic wave absorption applications[J]. Electronic Materials Letters, 2017, 13 (5): 398- 405.
doi: 10.1007/s13391-017-7003-y
88 XU Y , YAN Z , ZHANG D . Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite[J]. Applied Surface Science, 2015, 356, 1032- 1038.
doi: 10.1016/j.apsusc.2015.08.162
89 TAN Y , TANG J , DENG A , et al. Magnetic properties and microwave absorption properties of chlorosulfonated polye-thylene matrices containing graphite and carbonyl-iron powder[J]. Journal of Magnetism and Magnetic Materials, 2013, 326, 41- 44.
doi: 10.1016/j.jmmm.2012.08.021
90 XU Y , ZHANG D , CAI J , et al. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet[J]. Journal of Magnetism and Magnetic Materials, 2013, 327, 82- 86.
doi: 10.1016/j.jmmm.2012.09.045
91 DENG J L , FENG B . Carbonyl iron/graphite double-layer structural absorbing composite[J]. Advanced Materials Research, 2012, 557/559, 390- 393.
doi: 10.4028/www.scientific.net/AMR.557-559.390
92 LI B P , WANG C G , WANG W , et al. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon[J]. Journal of Magnetism and Magnetic Materials, 2014, 365, 40- 44.
doi: 10.1016/j.jmmm.2014.01.015
93 李斌鹏, 王成国, 王雯, 等. 无定形炭/磁性粒子复合吸波材料的制备和电磁性能研究[J]. 功能材料, 2012, 43 (14): 1941- 1944.
doi: 10.3969/j.issn.1001-9731.2012.14.030
93 LI B P , WANG C G , WANG W , et al. Electromagnetic wave absorption properties of amorphous carbon/magnetic particle composites[J]. Functional Materials, 2012, 43 (14): 1941- 1944.
doi: 10.3969/j.issn.1001-9731.2012.14.030
94 WU H , WANG L , WANG Y , et al. Enhanced microwave absorbing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites[J]. Materials Science and Engineering:B, 2012, 177 (6): 476- 482.
doi: 10.1016/j.mseb.2012.02.008
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[6] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[7] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[8] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[9] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[10] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[11] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[12] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[15] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn