Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 1-10    DOI: 10.11868/j.issn.1001-4381.2018.000224
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳材料在钙钛矿太阳能电池中的应用
应承展, 吕秋娟, 刘朝辉, 毕松, 侯根良, 汤进
火箭军工程大学, 西安 710025
Application of carbon materials in perovskite solar cells
YING Cheng-zhan, LYU Qiu-juan, LIU Chao-hui, BI Song, HOU Gen-liang, TANG Jin
Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(2297 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳能电池具有材料成本低廉、生产工艺简单、光电转换效率高等优点,发展前景十分光明。碳材料因其价格低廉、高导电性、疏水性和化学稳定性等特点,被应用在钙钛矿太阳能电池的各个组成部分,用于提高电池性能和降低成本。本文根据应用在钙钛矿太阳能电池中的碳材料的维数进行分类,分别介绍了零维的C60、碳量子点和石墨烯量子点,一维的碳纳米管,二维的石墨烯及其衍生物、石墨炔和三维的石墨等在钙钛矿太阳能电池中的应用,对于将来实现钙钛矿太阳能电池的低成本商业化和大规模制造具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
应承展
吕秋娟
刘朝辉
毕松
侯根良
汤进
关键词 碳材料钙钛矿太阳能电池电子传输层空穴传输层电极    
Abstract:Perovskite solar cells have the advantages of low material cost, simple production process and high photoelectric conversion efficiency, and their development prospects are bright. Carbon materials are used in various components of perovskite solar cells due to their low cost, high electrical conductivity, hydrophobicity and chemical stability to improve battery performance and reduce costs. Based on the dimensionality of the carbon materials used in perovskite solar cells, the zero-dimensional C60, carbon quantum dots and graphene quantum dots, one-dimensional carbon nanotubes, two-dimensional graphene and the application of derivatives, graphyne, and three-dimensional graphite in perovskite solar cells were described in this paper, and it is of great importance for the realization of low-cost commercialization and large-scale manufacturing of perovskite solar cells in the future.
Key wordscarbon materials    perovskite solar cell    electron transport layer    hole transport layer    counter electrode
收稿日期: 2018-02-15      出版日期: 2019-06-17
中图分类号:  O649  
通讯作者: 刘朝辉(1986-),男,讲师,博士后,研究方向为钙钛矿太阳能电池,联系地址:陕西省西安市灞桥区同心路2号火箭军工程大学(710025),E-mail:919259256@qq.com     E-mail: 919259256@qq.com
引用本文:   
应承展, 吕秋娟, 刘朝辉, 毕松, 侯根良, 汤进. 碳材料在钙钛矿太阳能电池中的应用[J]. 材料工程, 2019, 47(6): 1-10.
YING Cheng-zhan, LYU Qiu-juan, LIU Chao-hui, BI Song, HOU Gen-liang, TANG Jin. Application of carbon materials in perovskite solar cells. Journal of Materials Engineering, 2019, 47(6): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000224      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/1
[1] CHAPIN D M, FULLER C S, PEARSON G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5):676-677.
[2] RATH J K. Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications[J]. Solar Energy Materials & Solar Cells, 2003, 76(4):431-487.
[3] XING G, MATHEWS N, SUN S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156):344-347.
[4] STRANKS S, EPERON G, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156):341-343.
[5] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10):1584-1589.
[6] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051.
[7] KIM H, LEE C,IM J, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2:591.
[8] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237.
[9] BI D, TRESS W, DAR M I, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Science Advances, 2016, 2(1):e1501170.
[10] CHEN W, WU Y, YUE Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350(6263):944-948.
[11] ZHU Z L,MA J N,WANG Z L,et al.Efficiency enhancement of perovskite solar cells through fast electron extraction:the role of graphene quantum dots[J].J Am Chem Soc,2014,136(10):3760-3763.
[12] YANG W S, PARK B W, JUNG E H, et al. Iodide manag-ement in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345):1376-1379.
[13] DE W S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites:sharp optical absorption edge and its relation to photovoltaic performance.[J]. Journal of Physical Chemistry Letters, 2014, 5(6):1035-1039.
[14] ETGAR L, GAO P, XUE Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134(42):17396-17399.
[15] LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8(2):133-138.
[16] JEON N J, LEE J, NOH J H, et al. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials[J]. Journal of the American Chemical Society, 2013, 135(51):19087-19090.
[17] ABATE A, LEIJTENS T, PATHAK S, et al. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2013, 15(7):2572-2579.
[18] FURUBE A, KATOH R, HARA K, et al. Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(34):16406-16414.
[19] CAPPEL U B, DAENEKE T, BACH U. Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance[J]. Nano Letters, 2012, 12(9):4925-4931.
[20] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(Ⅱ) iodide[J]. Journal of the American Chemical Society, 2015, 137(27):8696-8699.
[21] HUANG X, WANG K, YI C, et al. Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer[J]. Advanced Energy Materials, 2016, 6(3):1501773.
[22] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9):897-903.
[23] SNAITH H J, GRÄTZEL M. Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant:implication to dye-sensitized solar cells[J]. Applied Physics Letters, 2006, 89(26):262114.
[24] ABBAS H A, KOTTOKKARAN R, GANAPATHY B, et al. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer[J]. APL Materials, 2015, 3(1):016105.
[25] WANG M, LI S, ZHANG P, et al. A modified sequential method used to prepare high quality perovskite on ZnO nanorods[J]. Chemical Physics Letters, 2015, 639:283-288.
[26] YAN W, LI Y, YE S, et al. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells[J]. Nano Research, 2016, 9(6):1600-1608.
[27] HAUCH A, GEORG A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells[J]. Electrochimica Acta, 2001, 46(22):3457-3466.
[28] CHOI J Y, HONG J T, SEO H, et al. Optimal series-parallel connection method of dye-sensitized solar cell for Pt thin film deposition using a radio frequency sputter system[J]. Thin Solid Films, 2008, 517(2):963-966.
[29] IKEGAMI M, MIYOSHI K, MIYASAKA T, et al. Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells[J]. Applied Physics Letters, 2007, 90(15):153122.
[30] DOMANSKI K, CORREA-BAENA J P, MINE N, et al. Not all that glitters is gold:metal-migration-induced degradation in perovskite solar cells[J]. ACS Nano, 2016, 10(6):6306-6314.
[31] MURAKAMI T N, KAY A, ITO S, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes[J]. Journal of the Electrochemical Society, 2006, 153(12):A2255-A2261.
[32] HUANG Z, LIU X, LI K, et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications, 2007, 9(4):596-598.
[33] 韩汝珊. 一个新的足球烯家族[M]. 长沙:湖南教育出版社, 1994. HAN R S. A new family of fullerenes[M]. Changsha:Hunan Education Press, 1994.
[34] 刘忠范. 碳纳米管-科学与应用[M]. 北京:科学出版社, 2007. LIU Z F. Carbon nano-tubes:science and application[M]. Beijing:Science Press, 2007.
[35] 陈永胜,黄毅. 石墨烯:新型二维碳纳米材料[M]. 北京:科学出版社, 2013. CHEN Y S, HUANG Y. Graphene:a new type of two-dimensional carbon nano-materials[M]. Beijing:Science Press, 2013.
[36] 宋正芳. 碳石墨制品的性能及其应用[M]. 北京:机械工业出版社, 1987:11-43. SONG Z F. Properties and applications of carbon graphite products[M]. Beijing:Machinery Industry Press, 1987:11-43.
[37] BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5):759-769.
[38] HU R, CHU L, ZHANG J, et al. Carbon materials for enhan-cing charge transport in the advancements of perovskite solar cells[J]. Journal of Power Sources, 2017, 361:259-275.
[39] LI H, SHI W, HUANG W, et al. Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%[J]. Nano Letters, 2017, 17(4):2328-2335.
[40] WOJCIECHOWSKI K. Sub 150℃ processed meso-superstruc-tured perovskite solar cells with enhanced efficiency (presentation video)[J]. Energy & Environmental Science, 2014, 7(3):1142-1147.
[41] ZOU H, GUO D, HE B, et al. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots[J]. Applied Surface Science, 2017, 430:625-631.
[42] ZHU Z, MA J, WANG Z, et al. Efficiency enhancement of perovskite solar cells through fast electron extraction:the role of graphene quantum dots[J]. Journal of the American Chemical Society, 2014, 136(10):3760-3763.
[43] FANG X, DING J, YUAN N, et al. Graphene quantum dot incorporated perovskite films:passivating grain boundaries and facilitating electron extraction[J]. Physical Chemistry Chemical Physics, 2017, 19(8):6057-6063.
[44] WOJCIECHOWSKI K, LEIJTENS T, SIPROVA S, et al. C60 as an efficient n-type compact layer in perovskite solar cells[J]. Journal of Physical Chemistry Letters, 2015, 6(12):2399-2405.
[45] LI Y, ZHAO Y, CHEN Q, et al. A multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(49):15540.
[46] HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Letters, 2014, 14(10):5561-5568.
[47] LI Z, KULKARNI SA, BOIX PP, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells[J]. ACS Nano, 2014, 8(7):6797-6804.
[48] LI H, CAO K, CUI J, et al. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes[J]. Nanoscale, 2016, 8(12):6379-6385.
[49] CHENG N, LIU P, QI F, et al. Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells[J]. Journal of Power Sources, 2016, 332:24-29.
[50] RYU J, LEE K, YUN J, et al. Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method[J]. Small, 2017, 13(38):1701225.
[51] ZHENG X, CHEN H, LI Q, et al. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells[J]. Nano Letters, 2017, 17(4):2496-2505.
[52] LIU L, RYU S, TOMASIK M R, et al. Graphene oxidation:thickness-dependent etching and strong chemical doping[J]. Nano Letters, 2008, 8(7):1965-1970.
[53] PRASAI D, TUBERQUIA J C, HARL R R, et al. Graphene:corrosion-inhibiting coating[J]. ACS Nano, 2012, 6(2):1102-1108.
[54] CHEN S, BROWN L, LEVENDORF M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. ACS Nano, 2010, 5(2):1321-1327.
[55] DU A, SANVITO S, LI Z, et al. Hybrid graphene and graphitic carbon nitride nanocomposite:gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response[J]. Journal of the American Chemical Society, 2012, 134(9):4393-4397.
[56] WANG T W, BALL J M, BAREA E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano Letters, 2014, 14(2):724-730.
[57] LI W, DONG H, GUO X, et al. Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(47):20105-20111.
[58] PALMA A L, CINÀ L, PESCETELLI S, et al. Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells[J]. Nano Energy, 2016, 22:349-360.
[59] KAKAVELAKIS G, KONIOS D, STRATAKIS E, et al. Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer[J]. Chemistry of Materials, 2014, 26(20):5988-5993.
[60] AGRESTI A, PESCETELLI S, CINÀ L, et al. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer[J]. Advanced Functional Materials, 2016, 26(16):2686-2694.
[61] NOURI E, MOHAMMADI M R, LIANOS P. Inverted perovskite solar cells based on lithium-functionalized graphene oxide as an electron-transporting layer[J]. Chemical Communic-ations, 2017, 53(10):1630-1633.
[62] JIAO Y, MA F, GAO G, et al. Graphene-covered Perovskites:An effective strategy to enhance light absorption and resist moisture degradation[J]. RSC Advances, 2015, 5(100):82346-82350.
[63] LI G, LI Y, QIAN X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. Journal of Physical Chemistry C, 2011, 115(6):2611-2615.
[64] LI G, LI Y, LIU H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19):3256-3258.
[65] LIU R, LIU H, LI Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6(19):11336-11343.
[66] HUANG C, ZHANG S, LIU H, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11(1):481-489.
[67] LI Y, XU L, LIU H, et al. Graphdiyne and graphyne:from theoretical predictions to practical construction[J]. Chemical Society Reviews, 2014, 43(8):2572-2586.
[68] XIAO J, SHI J, LIU H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J]. Advanced Energy Materials, 2015, 5(8):1401943.
[69] KUANG C, TANG G, JIU T, et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Letters, 2015, 15(4):2756-2762.
[70] CHEN H, YANG S. Carbon-based perovskite solar cells without hole transport materials:the front runner to the market[J]. Adv Mater, 2017,29:1603994-1604010.
[71] POLANDER L E, PAHNER P, SCHWARZE M, et al. Hole-transport material variation in fully vacuum deposited perovskite solar cells[J]. APL Materials, 2014, 2(8):081503.
[72] ZHANG F, YANG X, WANG H, et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6(18):16140-16145.
[73] HAN H, ZHANG L, LIU T, et al. The effect of carbon counter electrode on fully printable mesoscopic perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3(17):9165-9170.
[74] XU M, RONG Y, KU Z, et al. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell[J]. Journal of Materials Chemistry A, 2014, 2(23):8607-8611.
[75] RONG Y, KU Z, MEI A, et al. Hole-conductor-free mesos-copic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes[J]. Journal of Physical Chemistry Letters, 2014, 5(12):2160-2164.
[76] HU M, LIU L, MEI A, et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3[J]. Journal of Materials Chemistry A, 2014, 2(40):17115-17121.
[77] CHEN J, RONG Y, MEI A, et al. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3-x)(BF4)x[J]. Advanced Energy Materials, 2016, 6(5):1502009.
[78] LI X, DAR M I, YI C, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 2015, 7(9):703-711.
[79] LIU T, LIU L, HU M, et al. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell[J]. Journal of Power Sources, 2015, 293:533-538.
[80] LIU T, RONG Y, XIONG Y, et al. Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells[J]. RSC Advances, 2016, 7(17):10118-10123.
[81] MEI A, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science,2014345(6194):295-298.
[82] JIANG X, XIONG Y, MEI A, et al. Efficient compact-layer-free, hole-conductor-free, fully printable mesoscopic perovskite solar cell[J]. Journal of Physical Chemistry Letters, 2016, 7(20):4142-4146.
[83] SHENG Y, HU Y, MEI A, et al. Enhanced electronic proper-ties in CH3NH3PbI3:via LiCl mixing for hole-conductor-free printable perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4(42):16731-16736.
[84] RONG Y, HU Y, RAVISHANKAR S, et al. Tunable hyster-esis effect for perovskite solar cells[J]. Energy & Environmental Science, 2017, 10:2383-2391.
[85] HAN H, YANG Y, RI K, et al. Size effect of TiO2 nanopar-ticles on the printable mesoscopic perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3(17):9103-9107.
[86] XU L, WAN F, RONG Y, et al. Stable monolithic hole-conductor-free perovskite solar cells using TiO2, nanoparticle binding carbon films[J]. Organic Electronics, 2017, 45:131-138.
[87] DUAN M, TIAN C, HU Y, et al. Boron-doped graphite for high work function carbon electrode in printable hole-conductor-free mesoscopic perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(37):31721-31727.
[88] KU Z, RONG Y, XU M, et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode[J]. Scientific Reports, 2013, 3(11):3132.
[89] LIU L, MEI A, LIU T, et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer[J]. Journal of the American Chemical Society, 2015, 137(5):1790-1793.
[90] RONG Y, HOU X, HU Y, et al. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells[J]. Nature Communications, 2017, 8:14555.
[91] HU Y, SI S, MEI A, et al. Stable large-area (10×10cm2) printable mesoscopic perovskite module exceeding 10% efficiency[J]. Solar Rrl, 2017, 1(2):1600019.
[92] DUAN M, RONG Y, MEI A, et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite[J]. Carbon, 2017,120:70-76.
[93] LIU Z, HE H, ZHANG M, et al. P-type mesoscopic NiO as an active interfacial layer for carbon counter electrodes based perovskite solar cells[J]. Dalton Transactions, 2015, 44(9):3967-3973.
[94] XU X, LIU Z, ZUO Z, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode[J]. Nano Letters, 2015, 15(4):2402-2408.
[95] CAO K, ZUO Z, CUI J, et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture[J]. Nano Energy, 2015, 17:171-179.
[96] LI J, NIU G, LI W, et al. Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells[J]. Nanoscale, 2016, 8(29):14163-14170.
[97] CAO K, CUI J, ZHANG H, et al. Efficient mesoscopic perovskite solar cells based on CH3NH3PbI2Br light absorber[J]. Journal of Materials Chemistry A, 2015, 3(17):9116-9122.
[98] CAO K, LI H, LIU S, et al. MAPbI3-xBrx mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis[J]. Nanoscale, 2016, 8(16):8839-8846.
[99] LIU Z, YAN Z, BO S, et al. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22361-22368.
[100] LIU Z, SHI T, TANG Z, et al. Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity[J]. Nanoscale, 2015, 8(13):7017-7023.
[101] LIU Z, SHI T, TANG Z, et al. A large-area hole-conductor-free perovskite solar cell based on a low-temperature carbon counter electrode[J]. Materials Research Bulletin, 2017,96:196-200.
[102] WEI Z, CHEN H, YAN K, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells[J]. Angewandte Chemie, 2014, 53(48):13239-13243.
[103] CHEN H, WEI Z, HE H, et al. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%[J]. Advanced Energy Materials, 2016, 6(8):1502087.
[104] CHANG X, LI W, CHEN H, et al. Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2016, 8(44):30184-30192.
[105] YANG Y, XIAO J, WEI H, et al. An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells[J]. RSC Advances, 2014, 4(95):52825-52830.
[106] JIANG X, YU Z, LI H B, et al. A solution-processable copper(Ⅱ) phthalocyanine derivative as a dopant-free holetranspor-ting material for efficient and stable carbon counter electrode-based perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(34):17862-17866.
[107] ZHANG F, YANG X, WANG H, et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6(18):16140-16146.
[108] YU Z, CHEN B, LIU P, et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering[J]. Advanced Functional Materials, 2016, 26(27):4866-4873.
[109] XIAO Y, CHENG N, KONDAMAREDDY K K, et al. W-doped TiO2, mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes[J]. Journal of Power Sources, 2017, 342:489-494.
[110] CHENG N, LIU P, BAI S, et al. Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2, film by solvent treatment[J]. Journal of Power Sources, 2016, 319:111-115.
[111] BAKER J, HOOPER K, MERONI S, et al. High throughput fabrication of mesoporous carbon perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(35):18643-18650.
[112] GHOLIPOUR S, CORREA-BAENA J, DOMANSKI K, et al. Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth[J]. Advanced Energy Materials, 2016, 6(20):1601116.
[1] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[2] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[3] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[4] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[5] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[6] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[7] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[8] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
[9] 张晴, 黄其煜. 碳材料在染料敏化太阳能电池和钙钛矿太阳能电池对电极中的应用进展[J]. 材料工程, 2018, 46(5): 56-63.
[10] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[11] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[12] 王贝, 许立宁, 李东阳, 路民旭. O2/CO2共存环境下缓蚀剂抑制碳钢腐蚀的机理研究[J]. 材料工程, 2017, 45(5): 38-45.
[13] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[14] 邝泉波, 邹黎明, 蔡一湘, 刘辛, 程军, 易健宏. 等离子旋转电极雾化法制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金粉末[J]. 材料工程, 2017, 45(10): 39-46.
[15] 温凯, 裘进浩, 季宏丽, 朱孔军. 切割-填充法制备粗压电陶瓷纤维复合材料驱动器[J]. 材料工程, 2015, 43(1): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn