Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (6): 1-10    DOI: 10.11868/j.issn.1001-4381.2018.000224
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳材料在钙钛矿太阳能电池中的应用
应承展, 吕秋娟, 刘朝辉(), 毕松, 侯根良, 汤进
火箭军工程大学, 西安 710025
Application of carbon materials in perovskite solar cells
Cheng-zhan YING, Qiu-juan LYU, Chao-hui LIU(), Song BI, Gen-liang HOU, Jin TANG
Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(2297 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)      
摘要 

钙钛矿太阳能电池具有材料成本低廉、生产工艺简单、光电转换效率高等优点,发展前景十分光明。碳材料因其价格低廉、高导电性、疏水性和化学稳定性等特点,被应用在钙钛矿太阳能电池的各个组成部分,用于提高电池性能和降低成本。本文根据应用在钙钛矿太阳能电池中的碳材料的维数进行分类,分别介绍了零维的C60、碳量子点和石墨烯量子点,一维的碳纳米管,二维的石墨烯及其衍生物、石墨炔和三维的石墨等在钙钛矿太阳能电池中的应用,对于将来实现钙钛矿太阳能电池的低成本商业化和大规模制造具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
应承展
吕秋娟
刘朝辉
毕松
侯根良
汤进
关键词 碳材料钙钛矿太阳能电池电子传输层空穴传输层电极    
Abstract

Perovskite solar cells have the advantages of low material cost, simple production process and high photoelectric conversion efficiency, and their development prospects are bright. Carbon materials are used in various components of perovskite solar cells due to their low cost, high electrical conductivity, hydrophobicity and chemical stability to improve battery performance and reduce costs. Based on the dimensionality of the carbon materials used in perovskite solar cells, the zero-dimensional C60, carbon quantum dots and graphene quantum dots, one-dimensional carbon nanotubes, two-dimensional graphene and the application of derivatives, graphyne, and three-dimensional graphite in perovskite solar cells were described in this paper, and it is of great importance for the realization of low-cost commercialization and large-scale manufacturing of perovskite solar cells in the future.

Key wordscarbon materials    perovskite solar cell    electron transport layer    hole transport layer    counter electrode
收稿日期: 2018-02-15      出版日期: 2019-06-17
中图分类号:  O649  
基金资助:国家自然科学基金青年基金项目(51502341);中国博士后科学基金面上资助项目(2015M572697)
通讯作者: 刘朝辉     E-mail: 919259256@qq.com
作者简介: 刘朝辉(1986-), 男, 讲师, 博士后, 研究方向为钙钛矿太阳能电池, 联系地址:陕西省西安市灞桥区同心路2号火箭军工程大学(710025), E-mail:919259256@qq.com
引用本文:   
应承展, 吕秋娟, 刘朝辉, 毕松, 侯根良, 汤进. 碳材料在钙钛矿太阳能电池中的应用[J]. 材料工程, 2019, 47(6): 1-10.
Cheng-zhan YING, Qiu-juan LYU, Chao-hui LIU, Song BI, Gen-liang HOU, Jin TANG. Application of carbon materials in perovskite solar cells. Journal of Materials Engineering, 2019, 47(6): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000224      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/1
Fig.1  导电玻璃、电子传输层、CH3NH3PbI3能带示意图[39]
Fig.2  碳纳米管/聚三已基噻酚复合材料作为空穴传输层的太阳能电池结构示意图[46]
Fig.3  石墨炔改性P3HT作为空穴传输材料的钙钛矿太阳能电池示意图[68]
Fig.4  基于碳布/Spiro-OMeTAD的钙钛矿太阳能电池制备流程图[112]
Fig.5  喷墨打印碳/CH3NH3PbI3作为对电极的钙钛矿太阳能电池制备流程图[99]
1 CHAPIN D M , FULLER C S , PEARSON G L . A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25 (5): 676- 677.
doi: 10.1063/1.1721711
2 RATH J K . Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications[J]. Solar Energy Materials & Solar Cells, 2003, 76 (4): 431- 487.
3 XING G , MATHEWS N , SUN S , et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342 (6156): 344- 347.
doi: 10.1126/science.1243167
4 STRANKS S , EPERON G , GRANCINI G , et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342 (6156): 341- 343.
doi: 10.1126/science.1243982
5 WEHRENFENNIG C , EPERON G E , JOHNSTON M B , et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26 (10): 1584- 1589.
doi: 10.1002/adma.201305172
6 KOJIMA A , TESHIMA K , SHIRAI Y , et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051.
doi: 10.1021/ja809598r
7 KIM H , LEE C , IM J , et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2, 591.
doi: 10.1038/srep00591
8 YANG W S , NOH J H , JEON N J , et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348 (6240): 1234- 1237.
doi: 10.1126/science.aaa9272
9 BI D , TRESS W , DAR M I , et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Science Advances, 2016, 2 (1): e1501170.
doi: 10.1126/sciadv.1501170
10 CHEN W , WU Y , YUE Y , et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350 (6263): 944- 948.
doi: 10.1126/science.aad1015
11 ZHU Z L , MA J N , WANG Z L , et al. Efficiency enhancement of perovskite solar cells through fast electron extraction:the role of graphene quantum dots[J]. J Am Chem Soc, 2014, 136 (10): 3760- 3763.
doi: 10.1021/ja4132246
12 YANG W S , PARK B W , JUNG E H , et al. Iodide manag-ement in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356 (6345): 1376- 1379.
doi: 10.1126/science.aan2301
13 DE W S , HOLOVSKY J , MOON S J , et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. Journal of Physical Chemistry Letters, 2014, 5 (6): 1035- 1039.
doi: 10.1021/jz500279b
14 ETGAR L , GAO P , XUE Z , et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134 (42): 17396- 17399.
doi: 10.1021/ja307789s
15 LIU D , KELLY T L . Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8 (2): 133- 138.
doi: 10.1038/nphoton.2013.342
16 JEON N J , LEE J , NOH J H , et al. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials[J]. Journal of the American Chemical Society, 2013, 135 (51): 19087- 19090.
doi: 10.1021/ja410659k
17 ABATE A , LEIJTENS T , PATHAK S , et al. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2572- 2579.
doi: 10.1039/c2cp44397j
18 FURUBE A , KATOH R , HARA K , et al. Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109 (34): 16406- 16414.
doi: 10.1021/jp0513263
19 CAPPEL U B , DAENEKE T , BACH U . Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance[J]. Nano Letters, 2012, 12 (9): 4925- 4931.
doi: 10.1021/nl302509q
20 AHN N , SON D Y , JANG I H , et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(Ⅱ) iodide[J]. Journal of the American Chemical Society, 2015, 137 (27): 8696- 8699.
doi: 10.1021/jacs.5b04930
21 HUANG X , WANG K , YI C , et al. Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer[J]. Advanced Energy Materials, 2016, 6 (3): 1501773.
doi: 10.1002/aenm.201501773
22 JEON N J , NOH J H , KIM Y C , et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13 (9): 897- 903.
doi: 10.1038/nmat4014
23 SNAITH H J , GRÄTZEL M . Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: implication to dye-sensitized solar cells[J]. Applied Physics Letters, 2006, 89 (26): 262114.
doi: 10.1063/1.2424552
24 ABBAS H A , KOTTOKKARAN R , GANAPATHY B , et al. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer[J]. APL Materials, 2015, 3 (1): 016105.
doi: 10.1063/1.4905932
25 WANG M , LI S , ZHANG P , et al. A modified sequential method used to prepare high quality perovskite on ZnO nanorods[J]. Chemical Physics Letters, 2015, 639, 283- 288.
doi: 10.1016/j.cplett.2015.09.044
26 YAN W , LI Y , YE S , et al. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells[J]. Nano Research, 2016, 9 (6): 1600- 1608.
doi: 10.1007/s12274-016-1054-5
27 HAUCH A , GEORG A . Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells[J]. Electrochimica Acta, 2001, 46 (22): 3457- 3466.
doi: 10.1016/S0013-4686(01)00540-0
28 CHOI J Y , HONG J T , SEO H , et al. Optimal series-parallel connection method of dye-sensitized solar cell for Pt thin film deposition using a radio frequency sputter system[J]. Thin Solid Films, 2008, 517 (2): 963- 966.
doi: 10.1016/j.tsf.2008.08.159
29 IKEGAMI M , MIYOSHI K , MIYASAKA T , et al. Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells[J]. Applied Physics Letters, 2007, 90 (15): 153122.
doi: 10.1063/1.2722565
30 DOMANSKI K , CORREA-BAENA J P , MINE N , et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells[J]. ACS Nano, 2016, 10 (6): 6306- 6314.
doi: 10.1021/acsnano.6b02613
31 MURAKAMI T N , KAY A , ITO S , et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes[J]. Journal of the Electrochemical Society, 2006, 153 (12): A2255- A2261.
doi: 10.1149/1.2358087
32 HUANG Z , LIU X , LI K , et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications, 2007, 9 (4): 596- 598.
doi: 10.1016/j.elecom.2006.10.028
33 韩汝珊. 一个新的足球烯家族[M]. 长沙: 湖南教育出版社, 1994.
33 HAN R S . A new family of fullerenes[M]. Changsha: Hunan Education Press, 1994.
34 刘忠范. 碳纳米管—科学与应用[M]. 北京: 科学出版社, 2007.
34 LIU Z F . Carbon nano-tubes: science and application[M]. Beijing: Science Press, 2007.
35 陈永胜, 黄毅. 石墨烯:新型二维碳纳米材料[M]. 北京: 科学出版社, 2013.
35 CHEN Y S , HUANG Y . Graphene: a new type of two-dimensional carbon nano-materials[M]. Beijing: Science Press, 2013.
36 宋正芳. 碳石墨制品的性能及其应用[M]. 北京: 机械工业出版社, 1987: 11- 43.
36 SONG Z F . Properties and applications of carbon graphite products[M]. Beijing: Machinery Industry Press, 1987: 11- 43.
37 BOEHM H P . Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32 (5): 759- 769.
doi: 10.1016/0008-6223(94)90031-0
38 HU R , CHU L , ZHANG J , et al. Carbon materials for enhan-cing charge transport in the advancements of perovskite solar cells[J]. Journal of Power Sources, 2017, 361, 259- 275.
doi: 10.1016/j.jpowsour.2017.06.051
39 LI H , SHI W , HUANG W , et al. Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%[J]. Nano Letters, 2017, 17 (4): 2328- 2335.
doi: 10.1021/acs.nanolett.6b05177
40 WOJCIECHOWSKI K . Sub 150℃ processed meso-superstruc-tured perovskite solar cells with enhanced efficiency (presentation video)[J]. Energy & Environmental Science, 2014, 7 (3): 1142- 1147.
41 ZOU H , GUO D , HE B , et al. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots[J]. Applied Surface Science, 2017, 430, 625- 631.
42 ZHU Z , MA J , WANG Z , et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots[J]. Journal of the American Chemical Society, 2014, 136 (10): 3760- 3763.
doi: 10.1021/ja4132246
43 FANG X , DING J , YUAN N , et al. Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction[J]. Physical Chemistry Chemical Physics, 2017, 19 (8): 6057- 6063.
doi: 10.1039/C6CP06953C
44 WOJCIECHOWSKI K , LEIJTENS T , SIPROVA S , et al. C60 as an efficient n-type compact layer in perovskite solar cells[J]. Journal of Physical Chemistry Letters, 2015, 6 (12): 2399- 2405.
doi: 10.1021/acs.jpclett.5b00902
45 LI Y , ZHAO Y , CHEN Q , et al. A multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137 (49): 15540.
doi: 10.1021/jacs.5b10614
46 HABISREUTINGER S N , LEIJTENS T , EPERON G E , et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Letters, 2014, 14 (10): 5561- 5568.
doi: 10.1021/nl501982b
47 LI Z , KULKARNI SA , BOIX PP , et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells[J]. ACS Nano, 2014, 8 (7): 6797- 6804.
doi: 10.1021/nn501096h
48 LI H , CAO K , CUI J , et al. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes[J]. Nanoscale, 2016, 8 (12): 6379- 6385.
doi: 10.1039/C5NR07347B
49 CHENG N , LIU P , QI F , et al. Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells[J]. Journal of Power Sources, 2016, 332, 24- 29.
doi: 10.1016/j.jpowsour.2016.09.104
50 RYU J , LEE K , YUN J , et al. Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method[J]. Small, 2017, 13 (38): 1701225.
doi: 10.1002/smll.201701225
51 ZHENG X , CHEN H , LI Q , et al. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells[J]. Nano Letters, 2017, 17 (4): 2496- 2505.
doi: 10.1021/acs.nanolett.7b00200
52 LIU L , RYU S , TOMASIK M R , et al. Graphene oxidation: thickness-dependent etching and strong chemical doping[J]. Nano Letters, 2008, 8 (7): 1965- 1970.
doi: 10.1021/nl0808684
53 PRASAI D , TUBERQUIA J C , HARL R R , et al. Graphene: corrosion-inhibiting coating[J]. ACS Nano, 2012, 6 (2): 1102- 1108.
doi: 10.1021/nn203507y
54 CHEN S , BROWN L , LEVENDORF M , et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. ACS Nano, 2010, 5 (2): 1321- 1327.
55 DU A , SANVITO S , LI Z , et al. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response[J]. Journal of the American Chemical Society, 2012, 134 (9): 4393- 4397.
doi: 10.1021/ja211637p
56 WANG T W , BALL J M , BAREA E M , et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano Letters, 2014, 14 (2): 724- 730.
doi: 10.1021/nl403997a
57 LI W , DONG H , GUO X , et al. Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2 (47): 20105- 20111.
doi: 10.1039/C4TA05196C
58 PALMA A L , CINÀ L , PESCETELLI S , et al. Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells[J]. Nano Energy, 2016, 22, 349- 360.
doi: 10.1016/j.nanoen.2016.02.027
59 KAKAVELAKIS G , KONIOS D , STRATAKIS E , et al. Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer[J]. Chemistry of Materials, 2014, 26 (20): 5988- 5993.
doi: 10.1021/cm502826f
60 AGRESTI A , PESCETELLI S , CINÀ L , et al. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer[J]. Advanced Functional Materials, 2016, 26 (16): 2686- 2694.
doi: 10.1002/adfm.v26.16
61 NOURI E , MOHAMMADI M R , LIANOS P . Inverted perovskite solar cells based on lithium-functionalized graphene oxide as an electron-transporting layer[J]. Chemical Communic-ations, 2017, 53 (10): 1630- 1633.
doi: 10.1039/C6CC09876B
62 JIAO Y , MA F , GAO G , et al. Graphene-covered Perovskites: An effective strategy to enhance light absorption and resist moisture degradation[J]. RSC Advances, 2015, 5 (100): 82346- 82350.
doi: 10.1039/C5RA14381K
63 LI G , LI Y , QIAN X , et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. Journal of Physical Chemistry C, 2011, 115 (6): 2611- 2615.
doi: 10.1021/jp107996f
64 LI G , LI Y , LIU H , et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46 (19): 3256- 3258.
doi: 10.1039/b922733d
65 LIU R , LIU H , LI Y , et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6 (19): 11336- 11343.
doi: 10.1039/C4NR03185G
66 HUANG C , ZHANG S , LIU H , et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11 (1): 481- 489.
67 LI Y , XU L , LIU H , et al. Graphdiyne and graphyne: from theoretical predictions to practical construction[J]. Chemical Society Reviews, 2014, 43 (8): 2572- 2586.
doi: 10.1039/c3cs60388a
68 XIAO J , SHI J , LIU H , et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J]. Advanced Energy Materials, 2015, 5 (8): 1401943.
doi: 10.1002/aenm.201401943
69 KUANG C , TANG G , JIU T , et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Letters, 2015, 15 (4): 2756- 2762.
doi: 10.1021/acs.nanolett.5b00787
70 CHEN H , YANG S . Carbon-based perovskite solar cells without hole transport materials: the front runner to the market[J]. Adv Mater, 2017, 29, 1603994- 1604010.
doi: 10.1002/adma.201603994
71 POLANDER L E , PAHNER P , SCHWARZE M , et al. Hole-transport material variation in fully vacuum deposited perovskite solar cells[J]. APL Materials, 2014, 2 (8): 081503.
doi: 10.1063/1.4889843
72 ZHANG F , YANG X , WANG H , et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6 (18): 16140- 16145.
73 HAN H , ZHANG L , LIU T , et al. The effect of carbon counter electrode on fully printable mesoscopic perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9165- 9170.
doi: 10.1039/C4TA04647A
74 XU M , RONG Y , KU Z , et al. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell[J]. Journal of Materials Chemistry A, 2014, 2 (23): 8607- 8611.
doi: 10.1039/c4ta00379a
75 RONG Y , KU Z , MEI A , et al. Hole-conductor-free mesos-copic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes[J]. Journal of Physical Chemistry Letters, 2014, 5 (12): 2160- 2164.
doi: 10.1021/jz500833z
76 HU M , LIU L , MEI A , et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3[J]. Journal of Materials Chemistry A, 2014, 2 (40): 17115- 17121.
doi: 10.1039/C4TA03741C
77 CHEN J , RONG Y , MEI A , et al. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3-x)(BF4)x[J]. Advanced Energy Materials, 2016, 6 (5): 1502009.
doi: 10.1002/aenm.201502009
78 LI X , DAR M I , YI C , et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 2015, 7 (9): 703- 711.
doi: 10.1038/nchem.2324
79 LIU T , LIU L , HU M , et al. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell[J]. Journal of Power Sources, 2015, 293, 533- 538.
doi: 10.1016/j.jpowsour.2015.05.106
80 LIU T , RONG Y , XIONG Y , et al. Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells[J]. RSC Advances, 2016, 7 (17): 10118- 10123.
81 MEI A , LI X , LIU L , et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345 (6194): 295- 298.
doi: 10.1126/science.1254763
82 JIANG X , XIONG Y , MEI A , et al. Efficient compact-layer-free, hole-conductor-free, fully printable mesoscopic perovskite solar cell[J]. Journal of Physical Chemistry Letters, 2016, 7 (20): 4142- 4146.
doi: 10.1021/acs.jpclett.6b01815
83 SHENG Y , HU Y , MEI A , et al. Enhanced electronic proper-ties in CH3NH3PbI3: via LiCl mixing for hole-conductor-free printable perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4 (42): 16731- 16736.
doi: 10.1039/C6TA08021A
84 RONG Y , HU Y , RAVISHANKAR S , et al. Tunable hyster-esis effect for perovskite solar cells[J]. Energy & Environmental Science, 2017, 10, 2383- 2391.
85 HAN H , YANG Y , RI K , et al. Size effect of TiO2 nanopar-ticles on the printable mesoscopic perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9103- 9107.
doi: 10.1039/C4TA07030E
86 XU L , WAN F , RONG Y , et al. Stable monolithic hole-conductor-free perovskite solar cells using TiO2, nanoparticle binding carbon films[J]. Organic Electronics, 2017, 45, 131- 138.
doi: 10.1016/j.orgel.2017.03.005
87 DUAN M , TIAN C , HU Y , et al. Boron-doped graphite for high work function carbon electrode in printable hole-conductor-free mesoscopic perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9 (37): 31721- 31727.
88 KU Z , RONG Y , XU M , et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode[J]. Scientific Reports, 2013, 3 (11): 3132.
89 LIU L , MEI A , LIU T , et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer[J]. Journal of the American Chemical Society, 2015, 137 (5): 1790- 1793.
doi: 10.1021/ja5125594
90 RONG Y , HOU X , HU Y , et al. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells[J]. Nature Communications, 2017, 8, 14555.
doi: 10.1038/ncomms14555
91 HU Y , SI S , MEI A , et al. Stable large-area (10×10cm2) printable mesoscopic perovskite module exceeding 10% efficiency[J]. Solar Rrl, 2017, 1 (2): 1600019.
doi: 10.1002/solr.201600019
92 DUAN M , RONG Y , MEI A , et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite[J]. Carbon, 2017, 120, 70- 76.
93 LIU Z , HE H , ZHANG M , et al. P-type mesoscopic NiO as an active interfacial layer for carbon counter electrodes based perovskite solar cells[J]. Dalton Transactions, 2015, 44 (9): 3967- 3973.
doi: 10.1039/C4DT02904F
94 XU X , LIU Z , ZUO Z , et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode[J]. Nano Letters, 2015, 15 (4): 2402- 2408.
doi: 10.1021/nl504701y
95 CAO K , ZUO Z , CUI J , et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture[J]. Nano Energy, 2015, 17, 171- 179.
doi: 10.1016/j.nanoen.2015.08.009
96 LI J , NIU G , LI W , et al. Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells[J]. Nanoscale, 2016, 8 (29): 14163- 14170.
doi: 10.1039/C6NR03359H
97 CAO K , CUI J , ZHANG H , et al. Efficient mesoscopic perovskite solar cells based on CH3NH3PbI2Br light absorber[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9116- 9122.
doi: 10.1039/C5TA01129A
98 CAO K , LI H , LIU S , et al. MAPbI3-xBrx mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis[J]. Nanoscale, 2016, 8 (16): 8839- 8846.
doi: 10.1039/C6NR01043A
99 LIU Z , YAN Z , BO S , et al. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage[J]. ACS Applied Materials & Interfaces, 2017, 9 (27): 22361- 22368.
100 LIU Z , SHI T , TANG Z , et al. Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity[J]. Nanoscale, 2015, 8 (13): 7017- 7023.
101 LIU Z , SHI T , TANG Z , et al. A large-area hole-conductor-free perovskite solar cell based on a low-temperature carbon counter electrode[J]. Materials Research Bulletin, 2017, 96, 196- 200.
doi: 10.1016/j.materresbull.2017.03.069
102 WEI Z , CHEN H , YAN K , et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells[J]. Angewandte Chemie, 2014, 53 (48): 13239- 13243.
doi: 10.1002/anie.201408638
103 CHEN H , WEI Z , HE H , et al. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%[J]. Advanced Energy Materials, 2016, 6 (8): 1502087.
doi: 10.1002/aenm.201502087
104 CHANG X , LI W , CHEN H , et al. Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2016, 8 (44): 30184- 30192.
105 YANG Y , XIAO J , WEI H , et al. An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells[J]. RSC Advances, 2014, 4 (95): 52825- 52830.
doi: 10.1039/C4RA09519G
106 JIANG X , YU Z , LI H B , et al. A solution-processable copper(Ⅱ) phthalocyanine derivative as a dopant-free holetranspor-ting material for efficient and stable carbon counter electrode-based perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5 (34): 17862- 17866.
doi: 10.1039/C7TA04569G
107 ZHANG F , YANG X , WANG H , et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6 (18): 16140- 16146.
108 YU Z , CHEN B , LIU P , et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering[J]. Advanced Functional Materials, 2016, 26 (27): 4866- 4873.
doi: 10.1002/adfm.201504564
109 XIAO Y , CHENG N , KONDAMAREDDY K K , et al. W-doped TiO2, mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes[J]. Journal of Power Sources, 2017, 342, 489- 494.
doi: 10.1016/j.jpowsour.2016.12.079
110 CHENG N , LIU P , BAI S , et al. Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2, film by solvent treatment[J]. Journal of Power Sources, 2016, 319, 111- 115.
doi: 10.1016/j.jpowsour.2016.04.062
111 BAKER J , HOOPER K , MERONI S , et al. High throughput fabrication of mesoporous carbon perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5 (35): 18643- 18650.
doi: 10.1039/C7TA05674E
112 GHOLIPOUR S , CORREA-BAENA J , DOMANSKI K , et al. Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth[J]. Advanced Energy Materials, 2016, 6 (20): 1601116.
doi: 10.1002/aenm.201601116
[1] 黄英, 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚. 柔性储能电池电极的设计、制备与应用[J]. 材料工程, 2022, 50(4): 1-14.
[2] 何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
[3] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[4] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[5] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[6] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[7] 高可心, 余天玮, 权威, 常增花, 李国华, 王建涛. 锂离子电池多层复合电极结构研究进展[J]. 材料工程, 2021, 49(10): 18-30.
[8] 马珮珮, 李龙, 吴磊. 导电纱线的制备及其在智能可穿戴装置中的应用研究进展[J]. 材料工程, 2021, 49(10): 31-42.
[9] 张勇, 翟光美, 郑露露, 高领伟, 陈青, 任锦涛, 郁军, 许并社. 籽晶层对氧化锡纳米棒生长质量及其钙钛矿太阳能电池性能的影响[J]. 材料工程, 2021, 49(10): 55-62.
[10] 刘梓洋, 李杨, 刘兴江, 徐强. 自修复聚合物在电化学储能领域的研究进展[J]. 材料工程, 2021, 49(1): 1-10.
[11] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[12] 杨欢, 乔志军, 张志佳, 康建立, 于镇洋. 自支撑三维多孔Cu@SnO2膜电极的制备及储锂性能[J]. 材料工程, 2020, 48(12): 53-59.
[13] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[14] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[15] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn