Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 90-96    DOI: 10.11868/j.issn.1001-4381.2018.000266
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用
张国芳, 孙涵丰, 许剑轶, 张羊换
内蒙古科技大学 材料与冶金学院, 内蒙古 包头 014010
Catalytic effect of rare earth oxides with variable valences on hydrogen storage properties of Mg2Ni alloy
ZHANG Guo-fang, SUN Han-feng, XU Jian-yi, ZHANG Yang-huan
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
全文: PDF(3864 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用球磨法制备Mg2Ni-Ni-5% RExOy(CeO2,Nd2O3,Tb4O7)复合材料。通过XRD,SEM,面扫描能谱分析,电化学及动力学测试系统研究材料的组织及储氢性能。结果表明:添加稀土氧化物后复合材料的结晶程度降低,稀土氧化物催化剂在合金表面分布均匀。复合材料的最大放电容量明显提高,含Tb4O7样品室温下最大放电容量达871mAh·g-1,且具有较高循环稳定性。CeO2及Tb4O7催化剂可有效提高合金电极表面电荷转移能力,增大氢原子在合金内部的传输速率。稀土氧化物催化剂还可提高复合材料的气态吸氢容量,其中含Tb4O7样品的吸氢量最高,在250℃时吸氢量达到2.02%(质量分数),但在较低温度时吸氢速率稍慢。稀土氧化物的催化作用主要与稀土离子的变价特性有关,离子的易变价性越强,则催化活性越高。催化活性由大到小的顺序为Tb4O7 > CeO2 > Nd2O3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国芳
孙涵丰
许剑轶
张羊换
关键词 稀土氧化物Mg2Ni合金电化学性能动力学性能催化作用    
Abstract:Mg2Ni-Ni-5%RExOy(CeO2, Nd2O3, Tb4O7) composites were synthesized via ball milling method. The microstructure and hydrogen storage properties of the materials were analyzed systematically by XRD, SEM, EDS, the electrochemical and kinetic measurements. The results show that the crystallinities of the composites with rare earth oxides decrease, and the distribution of the rare earth oxide catalysts on the surface of alloys is uniform. The maximum discharge capacities of the composites with rare earth oxides rise evidently,the discharge capacity of the sample containing Tb4O7 reaches to 871mAh·g-1 at room temperature, and the composites can also keep higher cycling stability. The CeO2 and Tb4O7 catalysts can enhance the abilities of charge transfer on the surface of alloys, and improve the transmission rate of H atoms in the bulk of Mg2Ni alloy obviously. The rare earth oxides catalysts can also increase the gaseous hydrogen absorption capacity. The hydrogen storage capacity of the sample with Tb4O7 reaches to 2.02%(mass fraction) at 250℃, which is the maximum hydrogen absorption capacity among these samples, but the hydriding rate is relatively slow at lower temperature. The catalytic effect of the rare earth oxides is mainly related to the changeable valences of the rare earth ions, that is, the more likely of the valences change of the ions, the better the catalytic activities exhibit. The catalytic activities in descending order are Tb4O7, CeO2 and Nd2O3.
Key wordsrare earth oxide    Mg2Ni alloy    electrochemical property    kinetic property    catalytic effect
收稿日期: 2018-03-13      出版日期: 2019-10-12
中图分类号:  TG139.7  
通讯作者: 张国芳(1981-),女,副教授,博士,研究方向:储氢材料,联系地址:内蒙古包头市昆区阿尔丁大街7号内蒙古科技大学材料与冶金学院(014010),E-mail:afang1001@126.com     E-mail: afang1001@126.com
引用本文:   
张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
ZHANG Guo-fang, SUN Han-feng, XU Jian-yi, ZHANG Yang-huan. Catalytic effect of rare earth oxides with variable valences on hydrogen storage properties of Mg2Ni alloy. Journal of Materials Engineering, 2019, 47(10): 90-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000266      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/90
[1] 张国芳,翟亭亭,胡锋,等. 纳米CuO催化剂晶粒尺寸对Mg2Ni基复合材料储氢性能的影响[J]. 材料工程,2018,46(7):151-156. ZHANG G F,ZHAI T T, HU F,et al. Effect of different sizes of nano CuO catalysts on hydrogen storage properties of Mg2Ni based composites[J]. Journal of Materials Engineering,2018,46(7):151-156.
[2] 张国芳,张羊换,许剑轶,等. Ni-5%RExOy复合添加剂对Mg2Ni电化学储氢性能的影响[J]. 材料工程,2017,45(11):72-77. ZHANG G F,ZHANG Y H,XU J Y,et al. Effects of Ni-5%RExOy composite additives on electrochemical hydrogen storage performance of Mg2Ni[J]. Journal of Materials Engineering,2017,45(11):72-77.
[3] ZHANG G F,XU J Y,HOU Z H,et al. Research on micro-structure and catalysis properties of nanosized Ce1-x(Fe0.5Eu0.5)xO2-δ solid solutions[J]. Journal of Rare Earths,2017,35(1):63-70.
[4] 张国芳,张羊换,许剑轶,等. Mg2Ni-Ni-xCeO2复合材料储氢性能研究[J].稀有金属,2014,38(6):1035-1042. ZHANG G F,ZHANG Y H,XU J Y,et al. Hydrogen storage properties of Mg2Ni-Ni-xCeO2 composites[J]. Chinese Journal of Rare Metals,2014,38(6):1035-1042.
[5] XIE L,LI J,ZHANG T,et al. Air-stable MgH2-CeO2 composite with facilitated dehydrogenation kinetics synthesized by high energy ball milling[J]. Materials Characterization,2017,133:94-101.
[6] ZHANG Y,HUANG G,YUAN Z,et al. A comparison study of hydrogen storage performances of as-milled YMg11Ni alloy catalyzed by CeO2 and MoS2[J]. Materials Science & Engineering B,2017,225:1-9.
[7] ISMAI E,MEHMET A,SEMRA D A,et al. Phase stability and electric conductivity of Eu2O3-Tb4O7 co-doped Bi2O3 electrolyte[J]. International Journal of Hydrogen Energy,2015,40(30):9485-9490.
[8] ZHANG Y,DENG J,ZHANG H,et al. Three-dimensionally ordered macroporous Pr6O11 and Tb4O7 with mesoporous walls:preparation, characterization, and catalytic activity for CO oxidation[J]. Catalysis Today,2015,245:28-36.
[9] ZHANG Y,YANG T,CAI Y,et al. Structures and electroche-mical performances of RE-Mg-Ni-Mn-based alloys prepared by casting and melt spinning[J]. Jounal of Rare Earths,2016,34(12):1241-1251.
[10] DABAKI Y,BOUSSAMI S,KHALDI C,et al. The effect of ZnO addition on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.2Fe0.55 electrode used in nickel-metal hydride batteries[J]. Journal of Solid State Electrochemistry,2017,21(4):1-8.
[11] KURIYAMA N,SAKAI T,MIYAMURA H,et al. Electro-chemical impedance and deterioration behavior of metal hydride electrodes[J]. Journal of Alloys and Compound,1993,202(1/2):183-197.
[12] KURIYAMA N,SAKAI T,MIYAMURA H,et al. Electro-chemical impedance spectra and deterioration mechanism of metal hydride electrodes[J]. Journal of the Electrochemical Society,1992,139:72-73.
[13] WU M S,WU H R,WANG Y Y,et al. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery[J]. Journal of Alloys and Compoud,2000,302(1/2):248-257.
[14] OELERICH W,KLASSEN T,BORMANN R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials[J]. Journal of Alloys and Compounds,2001,315(1):237-242.
[15] TSUDA M,DINO W A,KASAI H,et al. Mg-H dissociation of magnesium hydride MgH2 catalyzed by 3d transition metals[J]. Thin Solid Films,2006,509(1):157-159.
[16] JANOT R,DAROK X,ROUGIER A,et al. Hydrogen sorption properties for surface treated MgH2 and Mg2Ni alloys[J]. Journal of Alloys and Compoud,2005,404/406(12):293-296.
[17] GULICOVSKI J,RASKOVIC-LOVRE Z,KURKO S,et al. Influence of vacant CeO2 nanostructured ceramics on MgH2 hydrogen desorption properties[J]. Ceramics International,2012,38(2):1181-1186.
[18] MUSTAFA N S,ISMAIL M. Hydrogen sorption improvement of MgH2 catalyzed by CeO2 nanopowder[J]. Journal of Alloys and Compoud,2017,695:2532-2538.
[19] CUI J,WANG H,LIU J,et al. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts[J]. Journal of Materials Chemistry A,2013,1(18):5603-5611.
[1] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[2] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[3] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[4] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[5] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[6] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[7] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[8] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[9] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[10] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[11] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
[12] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[13] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[14] 辛兆鹏, 方伟, 赵雷, 何漩, 陈辉, 李薇馨, 孙志敏. 液相泡沫复合微波活化技术制备分级多孔泡沫碳及电化学性能[J]. 材料工程, 2018, 46(11): 63-70.
[15] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn