Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 10-17    DOI: 10.11868/j.issn.1001-4381.2018.000267
  综述 本期目录 | 过刊浏览 | 高级检索 |
脉冲TIG增材制造技术研究进展
郭龙龙, 贺雨田, 鞠录岩, 吴泽兵, 张勇, 吕澜涛, 王文娟
西安石油大学 机械工程学院, 西安 710065
Progress in Additive Manufacturing Technique Based on Pulsed TIG
GUO Long-long, HE Yu-tian, JU Lu-yan, WU Ze-bing, ZHANG Yong, LYU Lan-tao, WANG Wen-juan
Mechanical Engineering College, Xi'an Shiyou University, Xi'an 710065, China
全文: PDF(30180 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 脉冲TIG(pulsed tungsten inert gas,PTIG)增材制造技术属于电弧增材制造技术的分支,其最显著的优势是成本低、沉积率和材料利用率高,适用于大尺寸结构件的制造。本工作从实验研究和数值模拟的角度,着重介绍了PTIG增材制造成形件成形质量控制、微观组织及性能控制方面的研究成果,总结了当前研究存在的不足。基于对成形件成形质量、微观组织及性能的准确预测和主动控制,提出了PTIG增材制造技术有待深入的研究方向,即:工艺因素对成形质量的影响机理研究、缺陷形成机制及其抑制措施研究、熔池微观组织演变数值模拟研究、成形件内应力和变形的调控机制研究、微观组织与力学性能关系模型的建立。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭龙龙
贺雨田
鞠录岩
吴泽兵
张勇
吕澜涛
王文娟
关键词 脉冲TIG增材制造成形质量微观组织力学性能    
Abstract:Additive manufacturing based on PTIG (pulsed tungsten inert gas, PTIG) is a branch of arc additive manufacturing technique. Its notable advantages are low cost, high deposition rate, high material utilization ratio, and suitable for manufacturing parts of large size. In this paper, the research results on the control of formation quality, microstructure and properties of the parts deposited by PTIG additive manufacturing were emphasized in view of experimental research and numerical simulation. Meanwhile, the shortcomings of current investigations were also summarized. Based on accurate prediction and accurate control on the formation quality, microstructure and properties, the research directions for further study on PTIG additive manufacturing technique in the future were put forward, including the influence mechanism of process factors on the formation quality, defects forming mechanism and the suppression measures, numerical simulation on microstructure evolution in molten pool, formation and regulation mechanisms on internal stress and deformation,and the establishment on quantitative relationship model between the microstructure and mechanical properties.
Key wordspulsed TIG    additive manufacturing    formation quality    microstructure    mechanical property
收稿日期: 2018-03-18      出版日期: 2018-12-18
中图分类号:  TG142  
通讯作者: 郭龙龙(1988-),男,讲师,博士,主要从事焊接、电弧增材制造、石油天然气装备表面改性等方面的研究,联系地址:陕西省西安市电子二路东段18号西安石油大学机械工程学院(710065),E-mail:llguo@xsyu.edu.cn     E-mail: llguo@xsyu.edu.cn
引用本文:   
郭龙龙, 贺雨田, 鞠录岩, 吴泽兵, 张勇, 吕澜涛, 王文娟. 脉冲TIG增材制造技术研究进展[J]. 材料工程, 2018, 46(12): 10-17.
GUO Long-long, HE Yu-tian, JU Lu-yan, WU Ze-bing, ZHANG Yong, LYU Lan-tao, WANG Wen-juan. Progress in Additive Manufacturing Technique Based on Pulsed TIG. Journal of Materials Engineering, 2018, 46(12): 10-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000267      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/10
[1] 张安峰,李涤尘,梁少端,等. 高性能金属零件激光增材制造技术研究进展[J]. 航空制造技术, 2016(22):16-22. ZHANG A F, LI D C, LIANG S D, et al. Development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 2016(22):16-22.
[2] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development trend and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21.
[3] 闫文韬,钱亚,林峰. 选区熔化过程多尺度多物理场建模研究进展[J]. 航空制造技术, 2017(10):50-58. YAN W T, QIAN Y, LIN F. Research progress of multi-scale multi-physics modeling for selective melting process[J]. Aeronautical Manufacturing Technology, 2017(10):50-58.
[4] 王延庆,沈竞兴,吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4):89-98. WANG Y Q, SHEN J X, WU H Q. Application and research status of alternative materials for 3D-printing Technology[J]. Journal of Aeronautical Materials, 2016, 36(4):89-98.
[5] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698.
[6] DING J, COLEGROVE P, MEHNEN J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12):3315-3322.
[7] 姚祥宏. 电弧增材高氮钢-316L不锈钢成形异材交织结构[D]. 南京:南京理工大学, 2017. YAO X H. Forming mix structure of high nitrogen steel and 316L stainless by wire arc additive manufacturing[D]. Nanjing:Nanjing University of Science & Technology, 2017.
[8] 陈伟,陈玉华,毛育青. 铝合金增材制造技术研究进展[J]. 精密成形工程, 2017, 9(5):214-219. CHEN W, CHEN Y H, MAO Y Q. Research progress in additive manufacturing technology of aluminum alloy[J]. Journal of Netshape Forming Engineering, 2017, 9(5):214-219.
[9] 柏久阳,王计辉,林三宝,等. 电弧増材制造厚壁结构焊道间距计算策略[J]. 机械工程学报, 2016, 52(10):97-102. BAI J Y, WANG J H, LIN S B, et al. Model for multi-beads overlapping calculation in GTA-additive manufacturing[J]. Journal of Mechanical Engineering, 2016, 52(10):97-102.
[10] GUO J, ZHOU Y, LIU C, et al. Wire arc additive manufacturing of AZ31 magnesium alloy:grain refinement by adjusting pulse frequency[J]. Materials, 2016, 9(10):823-836.
[11] WU Q R, MA Z S, CHEN G S, et al. Obtaining fine microstructure and unsupported overhangs by low heat input pulse arc additive manufacturing[J]. Journal of Manufacturing Processes, 2017, 27:198-206.
[12] 张晓鸿,马朋召,张康,等. 脉冲TIG焊接工艺参数对高温镍基合金焊缝组织的调控研究[J]. 机械工程学报, 2018, 54(2):93-101. ZHANG X H, MA P Z, ZHANG K, et al. Study on controlling of welding seam microstructure about nickel-based high-temperature alloy by pulse TIG welding process[J]. Journal of Mechanical Engineering, 2018, 54(2):93-101.
[13] WANG F D, WILLIAMS S, COLEGROVE P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2):968-977.
[14] WANG F, WILLIAMS S, RUSH M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2011, 57(5/8):597-603.
[15] GHOSH P K, KUMAR R. Surface modification of micro-alloyed high-strength low-alloy steel by controlled TIG arcing process[J]. Metallurgical and Materials Transactions A, 2015, 46(2):831-842.
[16] OUYANG J H, WANG H, KOVACEVIC R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding:process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17(1):103-124.
[17] KATOU M, OH J, MIYAMOTO Y, et al. Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding[J]. Materials & Design, 2007, 28(7):2093-2098.
[18] 陆善平,董文超,李殿中,等. 电弧特性及其对熔池形貌影响的数值模拟[J]. 物理学报, 2009, 58(13):94-103. LU S P, DONG W C, LI D Z, et al. Numerical simulation of arc properties and their effects on the weld shape[J]. Acta Physica Sinica, 2009, 58(13):94-103.
[19] 周祥曼,张海鸥,王桂兰,等. 电弧增材成形中熔积层表面形貌对电弧形态影响的仿真[J]. 物理学报, 2016, 65(3):331-342. ZHOU X M, ZHANG H O, WANG G L, et al. Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming[J]. Acta Physica Sinica, 2016, 65(3):331-342.
[20] 熊俊. 多层单道GMA增材制造成形特性及熔敷尺寸控制[D]. 哈尔滨:哈尔滨工业大学, 2014. XIONG J. Forming characteristics in multi-layer single-bead GMA additive manufacturing and control for deposition dimension[D]. Harbin:Harbin Institute of Technology, 2014.
[21] CHEN B, WANG J, CHEN S. Modeling of pulsed GTAW based on multi-sensor fusion[J]. Sensor Review, 2009, 29(3):223-232.
[22] LOTHONGKUM G, VIYANIT E, BHANDHUBANYONG P. Study on the effects of pulsed TIG welding parameters on delta-ferrite content, shape factor and bead quality in orbital welding of AISI 316L stainless steel plate[J]. Journal of Materials Processing Technology, 2001, 110(2):233-238.
[23] CHEN B, WANG J, CHEN S. Prediction of pulsed GTAW penetration status based on BP neural network and D-S evidence theory information fusion[J]. International Journal of Advanced Manufacturing Technology, 2010, 48(1/4):83-94.
[24] WANG H J, JIANG W H, OUYANG J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148(1):93-102.
[25] MADADI F, ASHRAFIZADEH F, SHAMANIAN M. Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSM[J]. Journal of Alloys and Compounds, 2012, 510(1):71-77.
[26] QI B J, YANG M X, CONG B Q, et al. The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel[J]. International Journal of Advanced Manufacturing Technology,2013,66(9/12):1545-1553.
[27] 李玉龙,从保强,齐铂金,等. 不同脉冲频率条件下2219-T87高强铝合金焊缝成形行为[J]. 焊接学报, 2013, 34(12):67-70. LI Y L, CONG B Q, QI B J, et al. Weld appearance of 2219-T87 high strength aluminum alloy at different pulse frequency[J]. Transactions of the China Welding Institution, 2013, 34(12):67-70.
[28] 徐小东,李悦钦,郭龙龙,等. 热丝脉冲TIG工艺参数对焊缝成型质量影响研究[J]. 兵器材料科学与工程, 2016, 39(6):60-65. XU X D, LI Y Q, GUO L L, et al. Effect of process parameters on formation quality of clads deposited by hot wire pulsed TIG[J]. Ordnance Material Science and Engineering, 2016, 39(6):60-65.
[29] GUO L L, ZHENG H L, LIU S H, et al. Formation quality optimization and corrosion performance of Inconel 625 weld overlay using hot wire pulsed TIG[J]. Rare Metal Materials and Engineering, 2016, 45(9):2219-2226.
[30] 孙红叶,从保强,苏勇,等. Al-6.3Cu铝合金电弧填丝增材制造成形与组织性能[J]. 航空制造技术, 2017(14):72-76. SUN H Y, CONG B Q, SU Y, et al. Geometry, microstructure and properties of wire+Arc additive manufacturing Al-6.3Cu alloy deposits[J]. Aeronautical Manufacturing Technology, 2017(14):72-76.
[31] 黄丹,朱志华,耿海滨,等. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3):66-72. HUANG D, ZHU Z H, GENG H B, et al. TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(3):66-72.
[32] KIM W H, NA S J. Heat and fluid flow in pulsed current GTA weld pool[J]. International Journal of Heat and Mass Transfer, 1998, 41(21):3213-3227.
[33] 武传松,郑炜,吴林. 脉冲电流作用下TIG焊接熔池行为的数值模拟[J]. 金属学报, 1998, 34(4):416-422. WU C S, ZHENG W, WU L. Numerical simulation of TIG weld pool behavior under the action of pulsed current[J]. Acta Metallurgica Sinica, 1998, 34(4):416-422.
[34] LU F G, YAO S, LOU S N, et al. Modeling and finite element analysis on GTAW arc and weld pool[J]. Computational Materials Science, 2004, 29(3):371-378.
[35] 杨明轩,杨舟,从保强,等. 超高频脉冲电弧焊接熔池金属流动行为[J]. 北京航空航天大学学报, 2015, 41(4):589-593. YANG M X, YANG Z, CONG B Q, et al. Metal molten behavior with ultra high frequency pulsed arc welding[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4):589-593.
[36] KIM W H, FAN H G, NA S J. A mathematical model of gas tungsten arc welding considering the cathode and the free surface of the weld pool[J]. Metallurgical and Materials Transactions B, 1997, 28(4):679-686.
[37] TRAIDIA A, ROGER F, GUYOT E. Optimal parameters for pulsed gas tungsten arc welding in partially and fully penetrated weld pools[J]. International Journal of Thermal Sciences, 2010, 49(7):1197-1208.
[38] ROGER F, TRAIDIA A. Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding[J]. International Journal of Heat and Mass Transfer, 2011, 54(9):2163-2179.
[39] YANG M, YANG Z, CONG B, et al. A study on the surface depression of the molten pool with pulsed welding[J]. Welding Journal, 2014, 93(8):312-319.
[40] 高如超,饶政华,李芸霄,等. 脉冲GTAW熔池行为和焊缝成形的三维数值模拟[J]. 中南大学学报(自然科学版), 2013, 44(11):4712-4719. GAO R C, RAO Z H, LI Y X, et al. Three-dimensional modeling of weld pool dynamics and weld bead formation during pulsed GTAW[J]. Journal of Central South University (Science and Technology), 2013, 44(11):4712-4719.
[41] LIU J W, RAO Z H, LIAO S M, et al. Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents[J]. International Journal of Heat and Mass Transfer, 2015, 91:990-1000.
[42] ZHAO H H, ZHANG G J, YIN Z Q, et al. Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping[J]. Journal of Materials Processing Technology, 2012, 212(1):276-285.
[43] HORⅡ T, KIRIHARA S, MIYAMOTO Y. Freeform fabrication of superalloy objects by 3D micro welding[J]. Materials & Design, 2009, 30(4):1093-1097.
[44] AYARKWA K F, WILLIAMS S W, DING J. Assessing the effect of TIG alternating current time cycle on aluminium wire+arc additive manufacture[J]. Additive Manufacturing, 2017, 18:186-193.
[45] HEIGEL J C, MICHALERIS P, REUTZEL E W. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V[J]. Additive Manufacturing, 2015, 5:9-19.
[46] 赵慧慧. GMAW再制造多重堆积路径对质量影响及优化方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012. ZHAO H H. Path influence on quality and path optimization method in multiple deposition of GMAW remanufacturing[D]. Harbin:Harbin Institute of Technology, 2012.
[47] 徐富家. Inconel625合金等离子弧快速成形组织控制及工艺优化[D]. 哈尔滨:哈尔滨工业大学, 2013. XU F J. Microstructure control and process optimization of Inconel 625 alloy fabricated by plasma arc rapid prototyping[D]. Harbin:Harbin Institute of Technology, 2013.
[48] 郭龙龙. 脉冲TIG堆焊Inconel625工艺及堆焊层组织性能研究[D]. 成都:西南石油大学, 2017. GUO L L. Study on process, microstructure and performance of Inconel 625 cladding deposited using pulsed TIG[D]. Chengdu:Southwest Petroleum University, 2017.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[8] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[9] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[10] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[11] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[12] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[13] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[14] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[15] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn