Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 13-20    DOI: 10.11868/j.issn.1001-4381.2018.000268
  综述 本期目录 | 过刊浏览 | 高级检索 |
静磁场对定向凝固镍基高温合金组织影响的研究进展
刘承林, 苏海军, 张军, 刘林, 傅恒志
西北工业大学 凝固技术国家重点实验室, 西安 710072
Research progress in effect of static magnetic field on microstructure of directionally solidified Ni-based superalloy
LIU Cheng-lin, SU Hai-jun, ZHANG Jun, LIU Lin, FU Heng-zhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(7077 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了国内外静磁场对镍基高温合金组织影响的研究现状,重点分析了施加不同方式、强度的静磁场对定向凝固镍基高温合金枝晶组织、元素偏析、凝固缺陷及高温力学性能的影响规律,并从变截面处杂晶的控制、晶体取向偏离的控制以及对凝固特性的影响机制等方面提出了静磁场在定向凝固镍基高温合金研究中潜在的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘承林
苏海军
张军
刘林
傅恒志
关键词 镍基高温合金静磁场枝晶组织凝固缺陷    
Abstract:The current research progress in the influence of static magnetic field on the microstructures of directionally solidified Ni-based superalloy at home and abroad was reviewed, and the effect of different ways, strength of static magnetic fields on the dendritic microstructure, elemental segregation, solidification defects and high temperature mechanical properties was emphatically analyzed. The potential development of static magnetic field in directional solidification of nickel-based superalloy was proposed from the control of stray crystals at variable cross-sections, the control of crystal orientation deviation, and the influence mechanism of static magnetic field on solidification properties.
Key wordsNi-based superalloy    static magnetic field    dendritic microstructure    solidification defect
收稿日期: 2018-03-18      出版日期: 2019-09-18
中图分类号:  TG146.1+5  
通讯作者: 苏海军(1981-),男,教授,博士,主要从事高温合金定向凝固技术研究,联系地址:陕西省西安市碑林区友谊西路127号西北工业大学凝固技术国家重点实验室(710072),E-mail:shjnpu@nwpu.edu.cn     E-mail: shjnpu@nwpu.edu.cn
引用本文:   
刘承林, 苏海军, 张军, 刘林, 傅恒志. 静磁场对定向凝固镍基高温合金组织影响的研究进展[J]. 材料工程, 2019, 47(9): 13-20.
LIU Cheng-lin, SU Hai-jun, ZHANG Jun, LIU Lin, FU Heng-zhi. Research progress in effect of static magnetic field on microstructure of directionally solidified Ni-based superalloy. Journal of Materials Engineering, 2019, 47(9): 13-20.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000268      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/13
[1] HU Q, LIU L, ZHAO X B, et al. Effect of carbon and boron additions on segregation behavior of directionally solidified nickel-base superalloys with rhenium[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(11):3257-3264.
[2] 刘丽玉,高翔宇,杨宪锋,等. DD6单晶高温合金振动疲劳性能及断裂机理[J].材料工程,2018,46(2):128-133. LIU L Y, GAO X Y, YANG X F, et al. Vibration fatigue prop-erties and fracture mechanism of DD6 single crystal superalloy[J]. Journal of Materials Engineering, 2018, 46(2):128-133.
[3] 胡壮麒,刘丽荣,金涛,等.镍基单晶高温合金的发展[J].航空发动机,2005,31(3):1-7. HU Z Q, LIU L R, JIN T, et al. Development of nickel-base single crystal superalloy[J]. Aircraft Engine, 2005, 31(3):1-7.
[4] SIMS C T, STOLOFF N S, HAGEL W C. Superalloys Ⅱ[M].New York,US:Wiley-Interscience, 1987:334-338.
[5] 张军,黄太文,刘林,等.单晶高温合金凝固特性与典型凝固缺陷研究[J].金属学报,2015,51(10):1163-1178. ZHANG J, HUANG T W, LIU L, et al. Advances in solidif-ication characteristics and typical casting defects in nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2015, 51(10):1163-1178.
[6] LEHMANNA P, MOREAUB R, CAMELA D, et al. Modifi-cation of interdendritic convection in directional solidification by a uniform magnetic field[J]. Acta Materialia, 1998, 46(11):4067-4079.
[7] HARMAN T C, HONIG J M. Thermoelectric and thermomag-netic effects and applications[M]. New York,US:McGraw-Hill, 1967:64-88.
[8] LI X, FAUTRELLE Y, REN Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Materialia, 2007, 55(11):3803-3813.
[9] SHERCLIFF J A. Thermoelectric magnetohydrodynamics[J].Journal of Fluid Mechanics, 1979, 91(2):231-251.
[10] GEL'FGAT Y M, GORBUNOV L A. An additional source of forced convection in semiconductor melts during single-crystal growth in magnetic fields[J]. Soviet Physics-Doklady, 1989, 34(5):470-473.
[11] MOREAU R,LASKAR O,TANAKA M,et al. Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime[J].Materials Science and Engineering:A, 1993,173(1/2):93-100.
[12] YESILYURT S, VUJISIC L, MOTAKEF S, et al. A numerical investigation of the effect of thermoelectromagnetic convection (TEMC) on the Bridgman growth of Ge1-xSix[J]. Journal of Crystal Growth, 1999, 207(4):278-291.
[13] REN W L,LU L,YUAN G Z, et al. The effect of magnetic field on precipitation phases of single-crystal nickel-base superalloy during directional solidification[J].Materials Letters, 2013, 100:223-226.
[14] ZIMMERMANN G, WEISS A, MBAYA Z, et al. Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification[J]. Materials Science and Engineering:A, 2005, 413/414:236-242.
[15] 李旭,任忠鸣,任维丽,等. 纵向磁场作用下DZ417G高温合金的枝晶生长行为[J]. 中国有色金属学报,2010,20(10):1913-1921. LI X, REN Z M, REN W L, et al. Dendrite growth behavior of DZ417G superalloy under longitudinal magnetic field[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(10):1913-1921.
[16] 胡治宁,刘洪玉,任维丽,等.纵向静磁场对单晶高温合金DD483组织及蠕变性能的影响[J]. 上海金属,2013,35(3):5-11. HU Z N, LIU H Y, REN W L, et al. Effect of longitudinal static magnetic field on microstructure and creep property in single crystal super alloy DD483[J].Shanghai Metals, 2013, 35(3):5-11.
[17] LI X, GAGNOUD A, FAUTRELLE Y,et al. Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field[J]. Journal of Crystal Growth, 2010, 312(2):267-272.
[18] XUAN W D, REN Z M, LI C J. Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J]. Journal of Alloys and Compounds, 2015, 620:10-17.
[19] MUKHERJI D, ROSLER J, KRVGER M, et al. The effects of boron addition on the microstructure and mechanical properties of Co-Re-based high-temperature alloys[J]. Scripta Materialia, 2012, 66(1):60-63.
[20] LIU L, HUANG T W, QU M, et al. High thermal gradient directional solidification and its application in the processing of nickel-based superalloys[J]. Journal of Materials Processing Technology, 2010, 210(1):159-165.
[21] 黄太文,刘林,张卫国,等.抽拉速率跃迁对定向凝固单晶高温合金DD3一次枝晶间距和微观偏析的影响[J]. 金属学报,2009,45(10):1225-1231. HUANG T W, LIU L, ZHANG W G, et al.Effect of pull rate transition on primary dendritic spacing and microsegregation of DD3 single crystal superalloy[J]. Acta Metallurgica Sinica, 2009, 45(10):1225-1231.
[22] 刘艳明,勾靖国.电磁铸造技术研究进展[J].山西大同大学学报(自然科学版),2016,32(5):58-60. LIU Y M, GOU J G.Development of electro-magnetic casting engineering[J]. Journal of Shanxi Datong University(Natural Science), 2016, 32(5):58-60.
[23] RAPPAZ M, GANDIN C A, DESBIOLLES J L,et al.Prediction of grain structures in various solidification processes[J]. Metallurgical and Materials Transactions A, 1996, 27(3):695-705.
[24] NAPOLITANO R E, SCHAEFER R J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings[J]. Journal of Materials Science, 2000, 35(7):1641-1659.
[25] MENG X B, LI J G, CHEN Z Q, et al. Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-based single-crystal superalloy[J]. Metallurgical and Mater-ials Transactions A, 2013, 44(4):1955-1965.
[26] STANFORD N, DJAKOVIC A, SHOLLOCK B A, et al. See-ding of single crystal superalloys role of seed melt-back on casting defects[J]. Scripta Materialia, 2004, 50(1):159-163.
[27] TIN A, POLLOCK T M.Stabilization of thermosolutal convec-tive instabilities in Ni-based single-crystal superalloys:carbide precipitation and rayleigh numbers[J].Metallurgical and Materials Transactions A, 2003, 34(9):1953-1967.
[28] ZHAO X B, LIN L, ZHANG W G, et al.Analysis of compe-titive growth mechanism of stray grains of single crystal superalloys during directional solidification process[J].Rare Metal Materials and Engineering, 2011, 40(1):9-13.
[29] STANFORD N, DJAKOVIC A, SHOLLOCK B, et al. Defect grains in the melt-back region of CMSX-4 single crystal seeds[C]//10th International Symposium on Superalloys. Warrendale, PA,US:TMS,2004:719-726.
[30] YANG X L, NESS D, LEE P D, et al.Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4[J]. Materials Science and Engineering:A, 2005, 413/414:571-577.
[31] D'SOUZA N, JENNINGS P A, YANG X L, et al. Seeding of single-crystal superalloys-role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J]. Metallurgical and Materials Transactions B, 2005, 36(5):657-666.
[32] DONG Q, ZHANG J, DONG J F, et al. In situ observation of columnar-to-equiaxed transition in directional solidification using synchrotron X-radiation imaging technique[J].Materials Science and Engineering:A, 2011, 530:271-276.
[33] XUAN W D, LIU H, LAN J. Effect of a transverse magnetic field on stray grain formation of Ni-based single crystal super-alloy during directional solidification[J]. Metallurgical and Mat-erials Transactions B, 2016, 47(6):1-6.
[34] XUAN W D, LAN J, LIU H, et al.Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification[J]. Metallurgical and Materials Transactions A, 2017, 48(8):3804-3813.
[35] 王海锋,苏海军,张军,等.熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响[J].金属学报,2016,52(4):419-425. WANG H F, SU H J, ZHANG J, et al.Influence of melt super-heating treatment temperature on solute distribution behavior of a new Ni-based single crystal superalloys[J].Acta Metallurgica Sinica, 2016, 52(4):419-425.
[36] 刘世忠,史振学,李嘉荣. C含量对第二代单晶高温合金组织的影响[J]. 航空材料学报, 2017,37(3):9-15. LIU S Z, SHI Z X, LI J R. Effect of C content on micros-tructure of second generation single crystal superalloy[J]. Journal of Aeronautical Materials, 2017, 37(3):9-15.
[37] 任维丽,任忠鸣,房双,等.强磁场下时效热处理对高温合金DZ417G组织和硬度的影响[J]. 钢铁研究学报,2011,23(增刊2):419-422. REN W L, REN Z M, FANG S, et al.Effect of high-magnetic-field ageing treatment on the microstructure and hardness of DZ417G superalloy[J].Journal of Iron and Steel Research, 2011, 23(Suppl 2):419-422.
[38] 房双,任忠鸣,任维丽. 强磁场下热处理对定向凝固高温合金DZ417G析出相γ'的影响[J].上海金属,2011,33(6):15-19. FANG S, REN Z M, REN W L.Influences of thermal proc-essing under high magnetic field on the γ' precipitates of direc-tionally solidified DZ417G[J]. Shanghai Metals, 2011, 33(6):15-19.
[39] YUAN Z J, LI C J, MA C K, et al. Effect of static magnetic heat treatment on microstructures and mechanical properties of DZ483 alloy[J].Journal of Xi'an Technological University, 2009, 631(11):86-89.
[40] LI C J, YUAN Z J, XUAN W D, et al. Microstructure and mechanical properties of a Ni-based superalloy after heat treat-ment in a steady magnetic field[J]. Journal of Materials Proce-ssing Technology, 2017, 246:176-184.
[41] 刘丽荣,金涛,赵乃仁,等. 一种Ni基单晶高温合金[001] 方向的持久性能与断裂行为[J]. 金属学报,2004,40(8):858-862. LIU L R, JIN T, ZHAO N R, et al.Stress rupture properties and fracture behavior of a Ni-base single crystal superalloy along [001] direction[J].Acta Metallurgica Sinica, 2004, 40(8):858-862.
[42] REN W L, NIU C L, DING B, et al.Improvement in creep life of a nickel-based single-crystal superalloy via composition homo-geneity on the multiscales by magnetic-field-assisted directional solidification[J].Scientific Reports, 2018, 8(1):1452.
[1] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[2] 潘晖, 赵海生. 镍基钎料钎焊K465高温合金大间隙接头组织与性能研究[J]. 材料工程, 2017, 45(5): 86-93.
[3] 赵吉宾, 王志国, 赵宇辉, 龙雨, 王福雨, 来佑彬. 真空热处理对激光近净成形In625和C-276合金性能的影响[J]. 材料工程, 2016, 44(3): 28-34.
[4] 周静怡, 赵文侠, 郑真, 曲士昱, 贾新云, 郑运荣. 硼含量对IC10高温合金凝固行为的影响[J]. 材料工程, 2014, 0(8): 90-96.
[5] 郑亮, 肖程波, 张国庆, 袁华, 韩波, 唐定中. 高Cr铸造镍基高温合金K4648的母合金净度研究[J]. 材料工程, 2012, 0(3): 1-7.
[6] 赵新宝, 刘林, 杨初斌, 张军, 李玉龙, 傅恒志. 镍基单晶高温合金凝固缺陷研究进展[J]. 材料工程, 2012, 0(1): 93-98.
[7] 刘文慧, 郭绍庆, 叶雷, 毛唯, 周标. 采用BNi68CrWB钎料钎焊GH783的接头组织与性能[J]. 材料工程, 2010, 0(6): 73-77,83.
[8] 顾玉丽, 何玉怀, 陶春虎, 郑飞, 张国栋. FGH96镍基高温合金的高温低周疲劳断裂机理研究[J]. 材料工程, 2009, 0(9): 56-60.
[9] 张华霞, 吴昌新, 桂忠楼. 纯净化DZ125合金返回料研究[J]. 材料工程, 2009, 0(8): 68-70,75.
[10] 张华, 徐家文, 王吉明. 镍基高温合金喷射液束电解-激光复合加工试验研究[J]. 材料工程, 2009, 0(4): 75-80.
[11] 袁超, 郭建亭, 冀光. 一种低成本镍基铸造高温合金的高温力学行为[J]. 材料工程, 2004, 0(5): 12-15,39.
[12] 郑亮, 谷臣清, 郑运荣. 含Ru铸造镍基高温合金的显微组织[J]. 材料工程, 2002, 0(5): 3-6.
[13] 袁超, 郭建亭. 定向凝固镍基高温合金DZ17G的持久寿命[J]. 材料工程, 2002, 0(5): 11-13.
[14] 牛建平, 孙晓峰, 金涛, 杨克努, 管恒荣, 胡壮麒. 镍基高温合金用CaO坩埚真空感应熔炼脱氧研究[J]. 材料工程, 2002, 0(10): 36-38,42.
[15] 王宝如. 空心阴极光谱法分析铁镍基高温合金杂质[J]. 材料工程, 1999, 0(8): 41-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn