Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (6): 121-128    DOI: 10.11868/j.issn.1001-4381.2018.000273
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为
周强1,2, 程军2,3, 于振涛2, 崔文芳1,*()
1 东北大学 材料各向异性与织构教育部重点实验室, 沈阳 110004
2 西北有色金属研究院 陕西省医用金属材料重点实验室, 西安 710016
3 西北工业大学 凝固技术国家重点实验室, 西安 710072
Hot deformation behavior of new type of near β type Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy
Qiang ZHOU1,2, Jun CHENG2,3, Zhen-tao YU2, Wen-fang CUI1,*()
1 Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeast University, Shenyang 110004, China
2 Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(6412 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用Gleeble-3800型热模拟试验机对一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe(质量分数/%)钛合金进行等温恒应变速率压缩实验。变形温度范围为:655~855℃,应变速率范围为:0.001~10s-1,最大真应变为0.8。根据实验数据,建立了该合金的高温流变应力模型,计算出热变形激活能约为255kJ/mol,并绘制出热加工图。结合热加工图与材料的显微组织分析可知,在高应变速率(1~10s-1)条件下变形时,在热加工图上表现为材料的功率耗散值(η)低,为失稳区域,易产生绝热剪切带与局部塑性流动、开裂等现象。在应变速率小于0.01s-1和相变点(Tβ)温度以下(655~755℃)进行热变形时,组织变化主要以动态回复为主;在应变速率小于0.01s-1Tβ以上(755~855℃)进行热变形时,组织发生动态再结晶,且随着温度的升高,新产生的再结晶晶粒逐渐长大。在相变点附近(755~770℃),变形速率为0.001~0.003s-1区域内变形时,功率耗散值达到最大值,组织发生动态再结晶,该区域为合金热变形的"安全区"。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周强
程军
于振涛
崔文芳
关键词 钛合金热变形流变应力模型热加工图流变失稳    
Abstract

The isothermal constant strain rate compression tests of Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy were conducted by Gleeble-3800 simulator. The hot deformation temperature range is from 655℃ to 855℃ and the strain rate range is from 0.001s-1 to 10s-1 and the maximum true strain is 0.8. A high temperature flow stress model was built with activation energy of 255kJ/mol according to the experimental results for the alloy and the processing map of alloy was constructed according to DMM model. The metallographic analysis of alloy shows that the alloy exhibits domain of flow localization and adiabatic shear bands and low power dissipation efficiency in the high strain rate(1-10s-1). The alloy undergoes dynamic recovery in the temperature region of 655-755℃ and the strain rate below 0.01s-1. The dynamic recrystallization takes place at the strain rate below 0.01s-1 and in the temperature region of 755-855℃, the original deformed grains and recrystallized grains gradually grow with the increase of temperature. When the temperature is 755-770℃ and the strain rate is 0.001-0.003s-1, the alloy's power dissipation efficiency reaches the maximum and the recrystallized grain is uniform and fine. These regions can be considered as the optimal parameter range of isothermal compression for the alloy.

Key wordstitanium alloy    hot deformation    flow stress model    hot processing map    flow instability
收稿日期: 2018-03-18      出版日期: 2019-06-17
中图分类号:  TG146.2+3  
基金资助:国家重点研发项目计划(2016YFC11020003);陕西省重点研发计划项目(2017ZDXM-SF-039);陕西省重点科技创新团队项目(2016KCT-30)
通讯作者: 崔文芳     E-mail: cuiwf@atm.neu.edu.cn
作者简介: 崔文芳(1963-), 女, 教授, 主要从事先进生物钛合金表面改性、腐蚀行为及强韧性研究, 联系地址:沈阳市东北大学材料各向异性与织构教育部重点实验室(110004), E-mail:cuiwf@atm.neu.edu.cn
引用本文:   
周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
Qiang ZHOU, Jun CHENG, Zhen-tao YU, Wen-fang CUI. Hot deformation behavior of new type of near β type Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy. Journal of Materials Engineering, 2019, 47(6): 121-128.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000273      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/121
Mo V Cr Al Sn Fe O Ti
5.4 5.9 7.1 3.8 1.8 1.1 0.12 Bal
Table 1  Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金化学成分(质量分数/%)
Fig.1  合金在不同变形温度和应变速率下的真应力-真应变曲线
(a)655℃;(b)705℃;(c)755℃;(d)805℃;(e)855℃
Fig.2  峰值应力与变形温度和应变速率的关系曲线
Fig.3  lnσp-ln(a)和σp-ln(b)的关系曲线
Fig.4  lnsinh(ασ)-ln(a)和lnsinh(ασ)-1/T(b)的关系曲线
Fig.5  ln[sinh(ασ)]-lnZ的关系曲线
Fig.6  功率耗散效率η(a)、失稳系数ξ(b)与应变速率和温度的三维关系图
Fig.7  合金在不同应变量下的加工图  (a)ε=0.2;(b)ε=0.6;(c)ε=0.8
Fig.8  不同变形条件下的显微组织  (a)655℃,0.001s-1;(b)755℃,0.001s-1;(c)755℃,1s-1;(d)855℃,0.001s-1
Fig.9  不同变形条件下的显微组织  (a)655℃,10s-1;(b)855℃,10s-1
1 李青云. 稀有金属材料加工手册[M]. 北京: 冶金工业出版社, 1984: 3- 4.
1 LI Q Y . Rare metal processing manual[M]. Beijing: Metallurgical Industry Press, 1984: 3- 4.
2 FAN J K , KOU H C , LAI M J , et al. Characterization of hot deformation behavior of a new near beta titanium alloy:Ti-7333[J]. Materials & Design, 2013, 49, 945- 952.
3 王哲, 王新南, 商国强, 等. 新型超高强韧钛合金热变形行为研究[J]. 稀有金属材料与工程, 2018, 47 (3): 810- 815.
3 WANG Z , WANG X N , SHANG G Q , et al. Study on hot deformation behavior of new high strength and toughness titanium alloy[J]. Rare Metal Materials and Engineering, 2018, 47 (3): 810- 815.
4 BOBBILI R , RAMUDU B V , MADHU V . A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy[J]. Journal of Alloys & Compounds, 2016, 696, 295- 303.
5 WANG R , XI Z , ZHAO Y , et al. Hot Deformation microstructure and mechanism of Ti53311S titanium alloy[J]. Rare Metal Materials & Engineering, 2008, 37 (8): 1356- 1359.
6 PRASAD Y V R K , SESHACHARYULU T . Processing maps for hot working of titanium alloys[J]. Materials Science & Engineering:A, 1998, 243 (1/2): 82- 88.
7 TAMIRISAKANDALA S , BHAT R B , VEDAM B V . Recent advances in the deformation processing of titanium alloys[J]. Journal of Materials Engineering & Performance, 2003, 12 (6): 661- 673.
8 SELLARS C M , TEGART W J . On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14 (9): 1136- 1138.
doi: 10.1016/0001-6160(66)90207-0
9 JONAS J J , SOMANI M C , TEGART W J . Strength and structure under hot-working conditions[J]. Metallurgica Reviews, 1969, 14 (1): 1- 24.
10 PRASAD Y V R K , GEGEL H L , DORAIVELU S M , et al. Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15 (10): 1883- 1892.
doi: 10.1007/BF02664902
11 PRASAD Y V R K . Processing maps:a status report[J]. Journal of Materials Engineering & Performance, 2003, 12 (6): 638- 645.
12 ZIEGLER H . Progress in solid mechanics[M]. New York: Wiley Press, 1963.
13 BHAT B V R , MAHAJAN Y R , ROSHAN H M , PRASAD Y . Processing map for hot working of powder[J]. Metallurgical Transactions A, 1992, 23 (8): 2223- 2230.
doi: 10.1007/BF02646015
14 刘延辉, 姚泽坤, 宁永权, 等. 生物医用TC20钛合金高温变形行为及其本构关系[J]. 材料工程, 2014, (7): 16- 21.
14 LIU Y H , YAO Z K , NING Y Q , et al. Hot deformation behavior and constitutive relationship of biomedical TC20 alloy[J]. Journal of Materials Engineering, 2014, (7): 16- 21.
15 SESHACHARYULU T , MEDEIROS S C , MORGAN J T , et al. Hot deformation mechanisms in ELI Grade Ti-6Al-4V[J]. Scripta Materialia, 1999, 41 (3): 283- 288.
doi: 10.1016/S1359-6462(99)00163-3
16 ZHU Y , ZENG W , FENG F , et al. Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map[J]. Materials Science and Engineering:A, 2011, 528 (3): 1757- 1763.
doi: 10.1016/j.msea.2010.11.015
17 黄烁, 王磊, 张北江, 等. GH4706合金的热变形行为与显微组织演化[J]. 材料工程, 2015, 43 (2): 41- 46.
17 HUANG S , WANG L , ZHANG B J , et al. Hot deformation behavior and microstructure evolution of GH4706 alloy[J]. Journal of Materials Engineering, 2015, 43 (2): 41- 46.
18 赵映辉, 葛鹏, 赵永庆, 等. Ti-1300合金的热变形行为研究[J]. 稀有金属材料与程, 2009, 38 (1): 46- 49.
18 ZHAO Y H , GE P , ZHAO Y Q , et al. Hot deformation behavior of Ti-1300 alloy[J]. Rare Metal Materials and Engineering, 2009, 38 (1): 46- 49.
[1] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[2] 姚凯, 闵小华. 变形温度与应变速率耦合作用对TWIP效应Ti-15Mo合金力学性能的影响[J]. 材料工程, 2022, 50(8): 133-142.
[3] 汪雅婷, 黎俊良, 袁楷峰, 陈广义. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022, 50(6): 170-177.
[4] 王喆, 肖明颖, 高华兵, 董涛, 李海新, 杨振林, 果春焕, 姜风春. 钛合金/钢异种连接接头组织与性能研究进展[J]. 材料工程, 2022, 50(5): 11-19.
[5] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[6] 宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
[7] 信云鹏, 朱知寿, 王新南, 商国强, 王彦伟, 李明兵. 固溶冷却速率对全片层亚稳β钛合金α相形貌的影响[J]. 材料工程, 2022, 50(10): 80-86.
[8] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[9] 刘剑桥, 刘佳, 唐毓金, 王立强. 钛合金在骨科植入领域的研究进展[J]. 材料工程, 2021, 49(8): 11-25.
[10] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[11] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[12] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[13] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[14] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[15] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn