Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 121-128    DOI: 10.11868/j.issn.1001-4381.2018.000273
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为
周强1,2, 程军2,3, 于振涛2, 崔文芳1
1. 东北大学 材料各向异性与织构教育部重点实验室, 沈阳 110004;
2. 西北有色金属研究院 陕西省医用金属材料重点实验室, 西安 710016;
3. 西北工业大学 凝固技术国家重点实验室, 西安 710072
Hot deformation behavior of new type of near β type Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy
ZHOU Qiang1,2, CHENG Jun2,3, YU Zhen-tao2, CUI Wen-fang1
1. Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeast University, Shenyang 110004, China;
2. Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China;
3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(6412 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Gleeble-3800型热模拟试验机对一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe(质量分数/%)钛合金进行等温恒应变速率压缩实验。变形温度范围为:655~855℃,应变速率范围为:0.001~10s-1,最大真应变为0.8。根据实验数据,建立了该合金的高温流变应力模型,计算出热变形激活能约为255kJ/mol,并绘制出热加工图。结合热加工图与材料的显微组织分析可知,在高应变速率(1~10s-1)条件下变形时,在热加工图上表现为材料的功率耗散值(η)低,为失稳区域,易产生绝热剪切带与局部塑性流动、开裂等现象。在应变速率小于0.01s-1和相变点(Tβ)温度以下(655~755℃)进行热变形时,组织变化主要以动态回复为主;在应变速率小于0.01s-1Tβ以上(755~855℃)进行热变形时,组织发生动态再结晶,且随着温度的升高,新产生的再结晶晶粒逐渐长大。在相变点附近(755~770℃),变形速率为0.001~0.003s-1区域内变形时,功率耗散值达到最大值,组织发生动态再结晶,该区域为合金热变形的"安全区"。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周强
程军
于振涛
崔文芳
关键词 钛合金热变形流变应力模型热加工图流变失稳    
Abstract:The isothermal constant strain rate compression tests of Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy were conducted by Gleeble-3800 simulator. The hot deformation temperature range is from 655℃ to 855℃ and the strain rate range is from 0.001s-1 to 10s-1 and the maximum true strain is 0.8. A high temperature flow stress model was built with activation energy of 255kJ/mol according to the experimental results for the alloy and the processing map of alloy was constructed according to DMM model. The metallographic analysis of alloy shows that the alloy exhibits domain of flow localization and adiabatic shear bands and low power dissipation efficiency in the high strain rate(1-10s-1). The alloy undergoes dynamic recovery in the temperature region of 655-755℃ and the strain rate below 0.01s-1. The dynamic recrystallization takes place at the strain rate below 0.01s-1 and in the temperature region of 755-855℃, the original deformed grains and recrystallized grains gradually grow with the increase of temperature. When the temperature is 755-770℃ and the strain rate is 0.001-0.003s-1, the alloy's power dissipation efficiency reaches the maximum and the recrystallized grain is uniform and fine. These regions can be considered as the optimal parameter range of isothermal compression for the alloy.
Key wordstitanium alloy    hot deformation    flow stress model    hot processing map    flow instability
收稿日期: 2018-03-18      出版日期: 2019-06-17
中图分类号:  TG146.2+3  
通讯作者: 崔文芳(1963-),女,教授,主要从事先进生物钛合金表面改性、腐蚀行为及强韧性研究,联系地址:沈阳市东北大学材料各向异性与织构教育部重点实验室(110004),E-mail:cuiwf@atm.neu.edu.cn     E-mail: cuiwf@atm.neu.edu.cn
引用本文:   
周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
ZHOU Qiang, CHENG Jun, YU Zhen-tao, CUI Wen-fang. Hot deformation behavior of new type of near β type Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy. Journal of Materials Engineering, 2019, 47(6): 121-128.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000273      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/121
[1] 李青云.稀有金属材料加工手册[M].北京:冶金工业出版社,1984:3-4. LI Q Y.Rare metal processing manual[M].Beijing:Metallurgical Industry Press,1984:3-4.
[2] FAN J K,KOU H C, LAI M J,et al.Characterization of hot deformation behavior of a new near beta titanium alloy:Ti-7333[J].Materials & Design,2013,49:945-952.
[3] 王哲,王新南,商国强,等.新型超高强韧钛合金热变形行为研究[J].稀有金属材料与工程,2018,47(3):810-815. WANG Z,WANG X N,SHANG G Q,et al.Study on hot deformation behavior of new high strength and toughness titanium alloy[J].Rare Metal Materials and Engineering,2018,47(3):810-815.
[4] BOBBILI R,RAMUDU B V,MADHU V.A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy[J].Journal of Alloys & Compounds,2016,696:295-303.
[5] WANG R,XI Z,ZHAO Y,et al.Hot Deformation microstructure and mechanism of Ti53311S titanium alloy[J].Rare Metal Materials & Engineering,2008,37(8):1356-1359.
[6] PRASAD Y V R K,SESHACHARYULU T.Processing maps for hot working of titanium alloys[J].Materials Science & Engineering:A,1998,243(1/2):82-88.
[7] TAMIRISAKANDALA S,BHAT R B,VEDAM B V.Recent advances in the deformation processing of titanium alloys[J].Journal of Materials Engineering & Performance,2003,12(6):661-673.
[8] SELLARS C M,TEGART W J.On the mechanism of hot deformation[J].Acta Metallurgica,1966,14(9):1136-1138.
[9] JONAS J J,SOMANI M C,TEGART W J.Strength and structure under hot-working conditions[J].Metallurgica Reviews, 1969,14(1):1-24.
[10] PRASAD Y V R K,GEGEL H L,DORAIVELU S M,et al.Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical and Materials Transactions A,1984,15(10):1883-1892.
[11] PRASAD Y V R K.Processing maps:a status report[J].Journal of Materials Engineering & Performance,2003,12(6):638-645.
[12] ZIEGLER H.Progress in solid mechanics[M].New York:Wiley Press,1963.
[13] BHAT B V R,MAHAJAN Y R,ROSHAN H M,PRASAD Y.Processing map for hot working of powder[J].Metallurgical Transactions A,1992,23(8):2223-2230.
[14] 刘延辉,姚泽坤,宁永权,等.生物医用TC20钛合金高温变形行为及其本构关系[J].材料工程,2014(7):16-21. LIU Y H,YAO Z K,NING Y Q,et al.Hot deformation behavior and constitutive relationship of biomedical TC20 alloy[J]. Journal of Materials Engineering,2014(7):16-21.
[15] SESHACHARYULU T,MEDEIROS S C,MORGAN J T,et al.Hot deformation mechanisms in ELI Grade Ti-6Al-4V[J].Scripta Materialia,1999,41(3):283-288.
[16] ZHU Y,ZENG W,FENG F,et al.Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map[J].Materials Science and Engineering:A,2011,528(3):1757-1763.
[17] 黄烁,王磊,张北江,等.GH4706合金的热变形行为与显微组织演化[J].材料工程,2015,43(2):41-46. HUANG S,WANG L,ZHANG B J,et al.Hot deformation behavior and microstructure evolution of GH4706 alloy[J].Journal of Materials Engineering,2015,43(2):41-46.
[18] 赵映辉,葛鹏,赵永庆,等.Ti-1300合金的热变形行为研究[J].稀有金属材料与程,2009,38(1):46-49. ZHAO Y H,GE P,ZHAO Y Q,et al.Hot deformation behavior of Ti-1300 alloy[J].Rare Metal Materials and Engineering,2009,38(1):46-49.
[1] 刘石双, 仇平, 蔡建明, 李娟, 黄旭, 于辉, 刘利刚. Ti60钛合金室温保载疲劳性能及断裂行为[J]. 材料工程, 2019, 47(7): 112-120.
[2] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[3] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[4] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[5] 蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
[6] 回丽, 刘思奇, 周松, 王磊, 马闯, 赵强. 载荷方向和焊缝余高对氩弧焊缝疲劳性能的影响[J]. 材料工程, 2018, 46(2): 122-127.
[7] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
[8] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[9] 向力, 闵小华, 弭光宝. 体心立方Ti-Mo基钛合金应用研究进展[J]. 材料工程, 2017, 45(7): 128-136.
[10] 林松盛, 周克崧, 代明江, 石倩, 胡芳, 侯惠君, 韦春贝, 刘建武. 钛合金表面Ti-TiN-Zr-ZrN多层膜制备及性能[J]. 材料工程, 2017, 45(6): 31-35.
[11] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[12] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[13] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[14] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[15] 刘少飞, 王柯. 近β钛合金高温压缩变形过程中流变软化行为研究进展[J]. 材料工程, 2017, 45(2): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn