Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 68-75    DOI: 10.11868/j.issn.1001-4381.2018.000274
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能
贺星1,2, 孔德军2,3, 宋仁国1,2
1. 常州大学 材料科学与工程学院, 江苏 常州 213164;
2. 常州大学 江苏省材料表面科学与技术重点实验室, 江苏 常州 213164;
3. 常州大学 机械工程学院, 江苏 常州 213164
Microstructure and corrosion-wear resistance of laser cladding Al-Ni-TiC-CeO2 composite coatings
HE Xing1,2, KONG De-jun2,3, SONG Ren-guo1,2
1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China;
2. Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China;
3. School of Mechanical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
全文: PDF(7105 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用激光熔覆技术在S355海洋钢表面制备Al-Ni-TiC-CeO2熔覆涂层,通过SEM、EDS、XRD、显微硬度计等手段分析其表面-界面形貌、化学元素分布、物相组成及显微硬度,并研究其在3.5%(质量分数)NaCl溶液中耐腐蚀磨损与应力腐蚀开裂(stress corrosion cracking,SCC)等性能。结果表明:熔覆涂层主要由增强相TiC和连续相AlNi3,AlFe3组成,表面较为平整,无明显裂纹,稀释率为5%。涂层表面显微硬度达到809.3HV0.2,为基体的2.3倍。基体中交互作用主要以腐蚀加速磨损为主,而涂层中交互作用则以磨损加速腐蚀为主。基体材料与涂层的SCC敏感性分别为35.01%和17.69%,表明涂层能够明显抑制应力腐蚀开裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺星
孔德军
宋仁国
关键词 激光熔覆磨蚀应力腐蚀开裂复合涂层S355海洋钢    
Abstract:Al-Ni-TiC-CeO2 composite coatings were prepared by laser cladding technique on S355 offshore steel.The surface-interface morphologies,chemical element distribution, phase compositions, microhardness of the as-prepared coatings were analyzed by means of scanning electron microscope (SEM),energy dispersive X-ray spectrometer (EDS),X-ray diffractometer (XRD) and microhardness tester. Also, the corrosive wear resistance and stress corrosion cracking (SCC) of the coatings in 3.5%(mass fraction)NaCl solution were studied. The results show that the coating is mainly composed of TiC and AlNi3 phases as well as AlFe3 phase. The surface of the coating is relatively smooth, there is no obvious crack, and the dilution rate is 5%. The surface hardness of the coating is 809.3HV0.2, which is 2.3 times as high as the substrate. The interaction is mainly corrosion accelerating abrasion in the substrate, while it is wear accelerating corrosion in the coating. The SCC susceptibility of the substrate and coating are 35.01% and 17.69% respectively, which indicates that the coating can inhibit the SCC obviously.
Key wordslaser cladding    corrosive wear    stress corrosion cracking    composite coating    S355 offshore steel
收稿日期: 2018-03-18      出版日期: 2019-10-12
中图分类号:  TG174.44  
通讯作者: 宋仁国(1965-),男,教授,博士,博士研究生导师,主要从事材料腐蚀与防护、表面工程、计算材料科学等研究工作,联系地址:江苏省常州市武进区科教城科教会堂C座340室(213164),E-mail:songrg@hotmail.com     E-mail: songrg@hotmail.com
引用本文:   
贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47(10): 68-75.
HE Xing, KONG De-jun, SONG Ren-guo. Microstructure and corrosion-wear resistance of laser cladding Al-Ni-TiC-CeO2 composite coatings. Journal of Materials Engineering, 2019, 47(10): 68-75.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000274      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/68
[1] 郝文魁,刘智勇,王显宗,等. 海洋平台用高强钢强度及其耐蚀性现状及发展趋势[J]. 装备环境工程, 2014, 11(2):50-58. HAO W K, LIU Z Y, WANG X Z, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform[J]. Equipment Environmental Engineering, 2014, 11(2):50-58.
[2] 李嘉宁,刘科高,张元彬. 激光熔覆技术及应用[M]. 北京:化学工业出版社,2015. LI J N, LIU K G, ZHANG Y B. Laser cladding technology and application[M]. Beijing:Chemical Industry Press, 2015.
[3] PEI Y T,DE HOSSON J T M. Functionally graded materials produced by laser cladding[J]. Acta Materialia, 2000, 48(10):2617-2624.
[4] 黄瑞芬,罗建民,王春琴. 激光熔覆技术的应用及其发展[J]. 兵器材料科学与工程,2005,28(4):57-59. HUANG R F, LUO J M, WANG C Q. Applications and developments of laser cladding technology[J]. Ordnance Material Science and Engineering, 2005,28(4):57-59.
[5] 王旭,肖葵,程学群,等. Q235钢的污染海洋大气环境腐蚀寿命预测模型[J]. 材料工程, 2017, 45(4):51-57. WANG X, XIAO K, CHENG X Q, et al. Corrosion prediction model of Q235 steel in polluted marine atmospheric environment[J]. Journal of Materials Engineering, 2017, 45(4):51-57.
[6] 程广萍,何宜柱. 激光熔覆镍基合金与铝反应合成Ni-Al金属间化合物覆层的研究[J]. 材料工程, 2010(3):29-33. CHENG G P, HE Y Z. Ni-Al intermetallic coatings prepared by laser-cladding synthesize with Ni-based alloy and Al[J]. Journal of Materials Engineering, 2010(3):29-33.
[7] ZHANG S T, ZHOU J S, GUO B G, et al. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating[J]. Materials Science and Engineering:A, 2008, 49(1/2):47-54.
[8] LIU X B, MENG X J, LIU H Q, et al. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy[J]. Materials & Design, 2014, 55:404-409.
[9] FENG X, CUI X, JIN G, et al. Underwater laser cladding in full wet surroundings for fabrication of nickel aluminum bronze coatings[J]. Surface and Coatings Technology, 2018, 333:104-114.
[10] XU X, MI G, CHEN L, et al. Research on microstructures and properties of Inconel 625 coatings obtained by laser cladding with wire[J]. Journal of Alloys and Compounds, 2017, 715:362-373.
[11] LIU J, LI J, CHENG X, et al. Effect of dilution and macrose-gregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate[J]. Surface and Coatings Technology, 2017, 325:352-359.
[12] ZEISIG J, SCHÄDLICH N, GIEBELER L, et al. Microstructure and abrasive wear behavior of a novel FeCrMoVC laser cladding alloy for high-performance tool steels[J]. Wear, 2017, 382:107-112.
[13] KRZYZANOWSKI M, BAJDA S, LIU Y, et al. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59:404-417.
[14] SONG L, ZENG G, XIAO H, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders[J]. Journal of Manufacturing Processes, 2016, 24:116-124.
[15] GONG F, JUN S, GAO R, et al. Influence of heat treatment on microstructure and mechanical properties of FeCrNi coating produced by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8):2117-2125.
[1] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[2] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[3] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[4] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[5] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[6] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[7] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[8] 赵海朝, 梁秀兵, 乔玉林, 柳建, 张志彬, 仝永刚. 激光熔覆高熵合金涂层的研究进展[J]. 材料工程, 2019, 47(10): 33-43.
[9] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[10] 杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
[11] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[12] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
[13] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[14] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[15] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn