Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 114-120    DOI: 10.11868/j.issn.1001-4381.2018.000277
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能
冀光普1,2, 何秀芳1,2, 廖海峰1,2, 戴乐阳1,2, 孙迪1,2, 蔡谷昌3
1. 集美大学 轮机工程学院 福建省船舶与海洋工程重点实验室, 福建 厦门 361021;
2. 船机检测与再制造福建省高校工程研究中心, 福建 厦门 361021;
3. 中国人民解放军73131部队, 福建 漳州 363113
Tribological properties of surface modified Cu nanoflakes prepared by plasma assisted ball milling
JI Guang-pu1,2, HE Xiu-fang1,2, LIAO Hai-feng1,2, DAI Le-yang1,2, SUN Di1,2, CAI Gu-chang3
1. Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering, School of Marine Engineering, Jimei University, Xiamen 361021, Fujian, China;
2. Fujian Engineering Research Center of Marine Engine Detecting and Remanufacturing, Xiamen 361021, Fujian, China;
3. Unit 73131 of Chinese People's Liberation Army, Zhangzhou 363113, Fujian, China
全文: PDF(10215 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以硬脂酸为过程处理剂,采用等离子体辅助球磨制备表面修饰片状纳米Cu粉,并测试其摩擦学性能。结果表明:在等离子体的快速加热及电致塑性效应协同作用下,Cu粉呈现出超塑性而发生剧烈形变,辅助球磨5h制备的片状纳米Cu粉一次颗粒厚度在20nm左右。等离子体辅助球磨使片状纳米Cu粉体表面吸附并化学键合了非极性基团,Cu粉获得亲油疏水表面特性,在40CA船用润滑油中具有良好的分散性。片状纳米Cu粉严重的变形使其具有极高的活性,在摩擦过程中容易吸附铺展在摩擦副表面,使复合油有更好的抗磨性能。在高载荷、高转速工况下,片状纳米Cu粉显示出良好的减摩自修复效果,有效提高了润滑油的极压抗磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冀光普
何秀芳
廖海峰
戴乐阳
孙迪
蔡谷昌
关键词 片状纳米Cu粉等离子体辅助球磨表面修饰超塑性摩擦学性能    
Abstract:Surface modified nano-flake Cu powder was prepared by plasma assisted ball milling by adding stearic acid as a process agent and its tribological properties were tested. The results indicate that the Cu particle exhibiting an excellent superplasticity has severe plastic deformation induced by a synergistic effect of plasma high-rate heating and electroplasticity, and the 20nm-thick flake-like Cu particles are obtained after 5h milling time of plasma milling. These nano-flake Cu particles owning oleophobicity characteristics exhibit good dispersion in the 40CA marine lubricating oil due to that the surface of Cu nano-flake adsorbs and chemically bonds with some non-polar groups under the plasma assisted ball milling with stearic acid. The severe deformation of the nano-flake Cu particles displaying high activation are easily adsorbed and spread on the surface of the friction counterpart in the process of sliding, which promotes a better wear resistance for compound lubricant with nano-flake Cu addition. Under a high rotating speed and excessive load, the nano-flake Cu powder provides excellent friction-reducing and self-repairing characters and improves the anti-wear performance under an extreme pressure condition.
Key wordsCu nanoflake    plasma assisted ball-milling    surface modification    superplasticity    tribological property
收稿日期: 2018-02-18      出版日期: 2019-06-17
中图分类号:  TB383  
通讯作者: 戴乐阳(1972-),男,教授,博士,主要从事纳米润滑添加剂和船机修造技术的研究,联系地址:福建省厦门市石鼓路176号集美大学轮机工程学院(361021),E-mail:daileyang@jmu.edu.cn     E-mail: daileyang@jmu.edu.cn
引用本文:   
冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
JI Guang-pu, HE Xiu-fang, LIAO Hai-feng, DAI Le-yang, SUN Di, CAI Gu-chang. Tribological properties of surface modified Cu nanoflakes prepared by plasma assisted ball milling. Journal of Materials Engineering, 2019, 47(6): 114-120.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000277      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/114
[1] ZHANG Y, XU Y, YANG Y, et al. Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives[J]. Industrial Lubrication & Tribology, 2015, 67(3):227-232.
[2] 许一,南峰,徐滨士. 凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能[J]. 材料工程,2016,44(10):41-46. XU Y, NAN F, XU B S. Tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive[J]. Journal of Materials Engineering, 2016, 44(10):41-46.
[3] DESANKER M, JOHNSON B, SEYAM A M, et al. Oil-soluble silver-organic molecule for in situ deposition of lubricious metallic silver at high temperatures[J]. ACS Applied Materials & Interfaces, 2016, 8(21):13637-13645.
[4] ABAD M D, SÁNCHEZ-LÓPEZ J C. Tribological properties of surface-modified Pd nanoparticles for electrical contacts[J]. Wear, 2013, 297(1/2):943-951.
[5] 郑帅周,周琦,杨生荣,等. 氟化石墨烯的制备及其作为润滑油添加剂的摩擦学性能研究[J]. 摩擦学学报,2017,37(3):402-408. ZHENG S Z, ZHOU Q, YANG S R, et al. Preparation and tribological properties of fluorinated graphene nanosheets as additive in lubricating oil[J]. Tribology, 2017, 37(3):402-408.
[6] FURLAN K P, MELLO J D B D, KLEIN A N. Self-lubricating composites containing MoS2:a review[J]. Tribology Internati-onal, 2018, 120:280-298.
[7] XIAO H P, LIU S H. 2D nanomaterials as lubricant additive:a review[J]. Materials & Design, 2017, 135:319-332.
[8] 戴乐阳,孟荣刚,陈景锋,等. 一种用作润滑油添加剂的表面修饰纳米材料及制法与应用:CN 201410068071.5[P].2015-5-6. DAI L Y,MENG R G, CHEN J F,et al. Preparation and application of surface modificated nano materials as lubricating oil additives:CN 201410068071.5[P].2015-5-6.
[9] 闫锦,戴乐阳,孟荣刚,等.等离子体辅助球磨制备表面修饰纳米TiO2的摩擦学性能分析[J]. 摩擦学学报,2016,36(1):20-26. YAN J, DAI L Y, MENG R G, et al. Tribological properties of surface modificated nano-TiO2 prepared by plasma assisted ball milling[J]. Tribology, 2016, 36(1):20-26.
[10] 朱敏,鲁忠臣,胡仁宗,等. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用[J]. 金属学报,2016,52(10):1239-1248. ZHU M, LU Z C, HU R Z, et al. Dielectric barrier discharge plasma assisted ball milling technology and its applications in materials fabrication[J]. Acta Metallurgica Sinica, 2016, 52(10):1239-1248.
[11] WANG W, LU Z C, ZENG M Q, et al. Achieving high transverse rupture strength of WC-8Co hardmetals through forming plate-like WC grains by plasma assisted milling[J]. Materials Chemistry and Physics, 2017, 190:128-135.
[12] 张林,余林,成晓玲,等. 硬脂酸修饰纳米氧化钇的制备及其亲油特性[J]. 化工学报, 2011, 62(3):880-885. ZHANG L,YU L,CHENG X L, et al. Preparation and lipophilic performance of nano-Y2O3 modified with stearic acid[J]. Ciesc Journal, 2011, 62(3):880-885.
[13] DAI L Y. Behavior of Fe powder during high-energy ball milling cooperated with dielectric barrier discharge plasma[J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1):63-68.
[14] CONRAD H, YANG D. Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures[J]. Acta Materialia, 2002, 50(11):2851-2866.
[15] ALEXANDER V S, ALENA N M, ANATOLY A S, et al. Surface modification of iron particles with polystyrene and surfactants under high-energy ball milling[J]. Surface and Coatings Technology, 2013, 236:429-437.
[16] LIU Z J, WANG W C, YANG D Z, et al. In situ synthesis of AlN nanoparticles by solid state reaction from plasma assisted ball milling Al and diaminomaleonitrile mixture[J]. Ceramics International, 2016, 42(2):3411-3417.
[17] 姚焱,张平,汪珍春,等. 重金属铊胁迫羽衣甘蓝的in situ-ATR-FTIR表征[J]. 光谱学与光谱分析,2009,29(1):119-121. YAO Y, ZHANG P, WANG Z C, et al. Characterization of kale (brassica oberacea var acephala) under thallium stress by in situ attenuated total reflection FTIR[J]. Spectroscopy and Spectral Analysis, 2009, 29(1):119-121.
[18] 赵二辉,马彪,李和言,等. 孔隙度对湿式离合器局部润滑及摩擦特性影响研究[J]. 摩擦学学报,2017,37(3):325-332. ZHAO E H, MA B, LI H Y, et al. Influence of porosity on local lubrication and friction characteristics of wet clutch[J]. Tribology, 2017, 37(3):325-332.
[19] 于鹤龙,许一,史佩京,等. 纳米铜颗粒的摩擦学性能研究及其减摩润滑机理探讨[J]. 材料工程,2007(10):35-38. YU H L, XU Y, SHI P J, et al. Tribological properties and mechanism of Cu nanoparticles[J]. Journal of Materials Engineering, 2007(10):35-38.
[20] CAO T K, LEI S T, ZHANG M. The friction and wear behavior of Cu/Cu-MoS2 self-lubricating coating prepared by electrospark deposition[J]. Surface & Coatings Technology, 2015, 270:24-32.
[1] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[2] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[3] 吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
[4] 王昊, 张辉, 张继华, 赵云峰. 非共价键表面修饰的石墨烯/聚合物复合材料研究进展[J]. 材料工程, 2018, 46(7): 44-52.
[5] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[6] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[7] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[8] 景鹏展, 朱姝, 余木火, 袁象恺, 刘卫平, 姜正飞. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3): 21-27.
[9] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[10] 付明杰, 许慧元, 刘佳佳, 韩秀全. 基于最大m值法和恒应变速率法的Ti3Al基合金超塑变形行为研究[J]. 材料工程, 2015, 43(11): 32-38.
[11] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[12] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
[13] 田欣利, 王龙, 王朋晓, 吴志远, 张保国, 王健全. 工程陶瓷-典型金属摩擦副的摩擦学性能及组合优化[J]. 材料工程, 2014, 0(9): 45-50.
[14] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[15] 李恩重, 徐滨士, 王海斗, 郭伟玲. 玻璃纤维增强聚醚醚酮复合材料在水润滑下的摩擦学性能[J]. 材料工程, 2014, 0(3): 77-82,89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn