Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (6): 114-120    DOI: 10.11868/j.issn.1001-4381.2018.000277
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能
冀光普1,2, 何秀芳1,2, 廖海峰1,2, 戴乐阳1,2,*(), 孙迪1,2, 蔡谷昌3
1 集美大学 轮机工程学院 福建省船舶与海洋工程重点实验室, 福建 厦门 361021
2 船机检测与再制造福建省高校工程研究中心, 福建 厦门 361021
3 中国人民解放军73131部队, 福建 漳州 363113
Tribological properties of surface modified Cu nanoflakes prepared by plasma assisted ball milling
Guang-pu JI1,2, Xiu-fang HE1,2, Hai-feng LIAO1,2, Le-yang DAI1,2,*(), Di SUN1,2, Gu-chang CAI3
1 Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering, School of Marine Engineering, Jimei University, Xiamen 361021, Fujian, China
2 Fujian Engineering Research Center of Marine Engine Detecting and Remanufacturing, Xiamen 361021, Fujian, China
3 Unit 73131 of Chinese People's Liberation Army, Zhangzhou 363113, Fujian, China
全文: PDF(10215 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以硬脂酸为过程处理剂,采用等离子体辅助球磨制备表面修饰片状纳米Cu粉,并测试其摩擦学性能。结果表明:在等离子体的快速加热及电致塑性效应协同作用下,Cu粉呈现出超塑性而发生剧烈形变,辅助球磨5h制备的片状纳米Cu粉一次颗粒厚度在20nm左右。等离子体辅助球磨使片状纳米Cu粉体表面吸附并化学键合了非极性基团,Cu粉获得亲油疏水表面特性,在40CA船用润滑油中具有良好的分散性。片状纳米Cu粉严重的变形使其具有极高的活性,在摩擦过程中容易吸附铺展在摩擦副表面,使复合油有更好的抗磨性能。在高载荷、高转速工况下,片状纳米Cu粉显示出良好的减摩自修复效果,有效提高了润滑油的极压抗磨性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冀光普
何秀芳
廖海峰
戴乐阳
孙迪
蔡谷昌
关键词 片状纳米Cu粉等离子体辅助球磨表面修饰超塑性摩擦学性能    
Abstract

Surface modified nano-flake Cu powder was prepared by plasma assisted ball milling by adding stearic acid as a process agent and its tribological properties were tested. The results indicate that the Cu particle exhibiting an excellent superplasticity has severe plastic deformation induced by a synergistic effect of plasma high-rate heating and electroplasticity, and the 20nm-thick flake-like Cu particles are obtained after 5h milling time of plasma milling. These nano-flake Cu particles owning oleophobicity characteristics exhibit good dispersion in the 40CA marine lubricating oil due to that the surface of Cu nano-flake adsorbs and chemically bonds with some non-polar groups under the plasma assisted ball milling with stearic acid. The severe deformation of the nano-flake Cu particles displaying high activation are easily adsorbed and spread on the surface of the friction counterpart in the process of sliding, which promotes a better wear resistance for compound lubricant with nano-flake Cu addition. Under a high rotating speed and excessive load, the nano-flake Cu powder provides excellent friction-reducing and self-repairing characters and improves the anti-wear performance under an extreme pressure condition.

Key wordsCu nanoflake    plasma assisted ball-milling    surface modification    superplasticity    tribological property
收稿日期: 2018-02-18      出版日期: 2019-06-17
中图分类号:  TB383  
基金资助:国家自然科学基金资助项目(51779103);福建省科技计划项目(2018H0026);福建省科技(文化)拥军项目(2016);厦门市科技计划项目(3502Z20173031);福建省自然科学基金项目(2019J01708)
通讯作者: 戴乐阳     E-mail: daileyang@jmu.edu.cn
作者简介: 戴乐阳(1972-), 男, 教授, 博士, 主要从事纳米润滑添加剂和船机修造技术的研究, 联系地址:福建省厦门市石鼓路176号集美大学轮机工程学院(361021), E-mail:daileyang@jmu.edu.cn
引用本文:   
冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
Guang-pu JI, Xiu-fang HE, Hai-feng LIAO, Le-yang DAI, Di SUN, Gu-chang CAI. Tribological properties of surface modified Cu nanoflakes prepared by plasma assisted ball milling. Journal of Materials Engineering, 2019, 47(6): 114-120.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000277      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/114
Fig.1  Cu粉体的SEM图像  (a)原始铜粉;(b)等离子体辅助球磨5h
Fig.2  Cu粉体的XRD谱
Fig.3  片状纳米Cu粉的TEM图像
Fig.4  硬脂酸(a)和片状纳米Cu粉(b)的红外吸收光谱
Fig.5  片状纳米Cu粉在船用40CA润滑油中分散性测试  (a)0天; (b)25天
Fig.6  100N和200N载荷下基础油和复合油的摩擦因数
Fig.7  100N和200N载荷下基础油和复合油中的磨损失重
Fig.8  100N和200N载荷下的磨痕形貌
(a)100N基础油;(b)100N复合油;(c)200N基础油;(d)200N复合油
Fig.9  200N载荷下的摩擦表面扫描电镜形貌及表面能谱    (a)基础油;(b)复合油
Fig.10  200N载荷下的摩擦表面能谱  (a)基础油;(b)复合油
1 ZHANG Y , XU Y , YANG Y , et al. Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives[J]. Industrial Lubrication & Tribology, 2015, 67 (3): 227- 232.
2 许一, 南峰, 徐滨士. 凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能[J]. 材料工程, 2016, 44 (10): 41- 46.
doi: 10.11868/j.issn.1001-4381.2016.10.006
2 XU Y , NAN F , XU B S . Tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive[J]. Journal of Materials Engineering, 2016, 44 (10): 41- 46.
doi: 10.11868/j.issn.1001-4381.2016.10.006
3 DESANKER M , JOHNSON B , SEYAM A M , et al. Oil-soluble silver-organic molecule for in situ deposition of lubricious metallic silver at high temperatures[J]. ACS Applied Materials & Interfaces, 2016, 8 (21): 13637- 13645.
4 ABAD M D , SÁNCHEZ-LÓPEZ J C . Tribological properties of surface-modified Pd nanoparticles for electrical contacts[J]. Wear, 2013, 297 (1/2): 943- 951.
5 郑帅周, 周琦, 杨生荣, 等. 氟化石墨烯的制备及其作为润滑油添加剂的摩擦学性能研究[J]. 摩擦学学报, 2017, 37 (3): 402- 408.
5 ZHENG S Z , ZHOU Q , YANG S R , et al. Preparation and tribological properties of fluorinated graphene nanosheets as additive in lubricating oil[J]. Tribology, 2017, 37 (3): 402- 408.
6 FURLAN K P , MELLO J D B D , KLEIN A N . Self-lubricating composites containing MoS2:a review[J]. Tribology Internati-onal, 2018, 120, 280- 298.
doi: 10.1016/j.triboint.2017.12.033
7 XIAO H P , LIU S H . 2D nanomaterials as lubricant additive:a review[J]. Materials & Design, 2017, 135, 319- 332.
8 戴乐阳, 孟荣刚, 陈景锋, 等.一种用作润滑油添加剂的表面修饰纳米材料及制法与应用: CN 201410068071.5[P].2015-5-6.
8 DAI L Y, MENG R G, CHEN J F, et al. Preparation and application of surface modificated nano materials as lubricating oil additives: CN 201410068071.5[P].2015-5-6.
9 闫锦, 戴乐阳, 孟荣刚, 等. 等离子体辅助球磨制备表面修饰纳米TiO2的摩擦学性能分析[J]. 摩擦学学报, 2016, 36 (1): 20- 26.
9 YAN J , DAI L Y , MENG R G , et al. Tribological properties of surface modificated nano-TiO2 prepared by plasma assisted ball milling[J]. Tribology, 2016, 36 (1): 20- 26.
10 朱敏, 鲁忠臣, 胡仁宗, 等. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用[J]. 金属学报, 2016, 52 (10): 1239- 1248.
doi: 10.11900/0412.1961.2016.00360
10 ZHU M , LU Z C , HU R Z , et al. Dielectric barrier discharge plasma assisted ball milling technology and its applications in materials fabrication[J]. Acta Metallurgica Sinica, 2016, 52 (10): 1239- 1248.
doi: 10.11900/0412.1961.2016.00360
11 WANG W , LU Z C , ZENG M Q , et al. Achieving high transverse rupture strength of WC-8Co hardmetals through forming plate-like WC grains by plasma assisted milling[J]. Materials Chemistry and Physics, 2017, 190, 128- 135.
doi: 10.1016/j.matchemphys.2017.01.010
12 张林, 余林, 成晓玲, 等. 硬脂酸修饰纳米氧化钇的制备及其亲油特性[J]. 化工学报, 2011, 62 (3): 880- 885.
12 ZHANG L , YU L , CHENG X L , et al. Preparation and lipophilic performance of nano-Y2O3 modified with stearic acid[J]. Ciesc Journal, 2011, 62 (3): 880- 885.
13 DAI L Y . Behavior of Fe powder during high-energy ball milling cooperated with dielectric barrier discharge plasma[J]. Acta Metallurgica Sinica (English Letters), 2013, 26 (1): 63- 68.
doi: 10.1007/s40195-012-0089-1
14 CONRAD H , YANG D . Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures[J]. Acta Materialia, 2002, 50 (11): 2851- 2866.
doi: 10.1016/S1359-6454(02)00109-X
15 ALEXANDER V S , ALENA N M , ANATOLY A S , et al. Surface modification of iron particles with polystyrene and surfactants under high-energy ball milling[J]. Surface and Coatings Technology, 2013, 236, 429- 437.
doi: 10.1016/j.surfcoat.2013.10.030
16 LIU Z J , WANG W C , YANG D Z , et al. In situ synthesis of AlN nanoparticles by solid state reaction from plasma assisted ball milling Al and diaminomaleonitrile mixture[J]. Ceramics International, 2016, 42 (2): 3411- 3417.
doi: 10.1016/j.ceramint.2015.10.136
17 姚焱, 张平, 汪珍春, 等. 重金属铊胁迫羽衣甘蓝的in situ-ATR-FTIR表征[J]. 光谱学与光谱分析, 2009, 29 (1): 119- 121.
doi: 10.3964/j.issn.1000-0593(2009)01-0119-03
17 YAO Y , ZHANG P , WANG Z C , et al. Characterization of kale (brassica oberacea var acephala) under thallium stress by in situ attenuated total reflection FTIR[J]. Spectroscopy and Spectral Analysis, 2009, 29 (1): 119- 121.
doi: 10.3964/j.issn.1000-0593(2009)01-0119-03
18 赵二辉, 马彪, 李和言, 等. 孔隙度对湿式离合器局部润滑及摩擦特性影响研究[J]. 摩擦学学报, 2017, 37 (3): 325- 332.
18 ZHAO E H , MA B , LI H Y , et al. Influence of porosity on local lubrication and friction characteristics of wet clutch[J]. Tribology, 2017, 37 (3): 325- 332.
19 于鹤龙, 许一, 史佩京, 等. 纳米铜颗粒的摩擦学性能研究及其减摩润滑机理探讨[J]. 材料工程, 2007, (10): 35- 38.
doi: 10.3969/j.issn.1001-4381.2007.10.009
19 YU H L , XU Y , SHI P J , et al. Tribological properties and mechanism of Cu nanoparticles[J]. Journal of Materials Engineering, 2007, (10): 35- 38.
doi: 10.3969/j.issn.1001-4381.2007.10.009
20 CAO T K , LEI S T , ZHANG M . The friction and wear behavior of Cu/Cu-MoS2 self-lubricating coating prepared by electrospark deposition[J]. Surface & Coatings Technology, 2015, 270, 24- 32.
[1] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[2] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[3] 杨礼河, 陈绪望, 张建国, 孙玉德. 纳米G/Fe3O4复合材料的制备及其摩擦学性能[J]. 材料工程, 2021, 49(2): 143-148.
[4] 王勉, 刘秀波, 欧阳春生, 罗迎社, 陈德强. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49(1): 133-143.
[5] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[6] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[7] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[8] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[9] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[10] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[11] 叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
[12] 吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
[13] 王昊, 张辉, 张继华, 赵云峰. 非共价键表面修饰的石墨烯/聚合物复合材料研究进展[J]. 材料工程, 2018, 46(7): 44-52.
[14] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[15] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn