Cyanate ester for domestic T800 carbon fiber and its composites properties
OU Qiu-ren1,2, JI Pei-jun2, XIAO Jun1, WU Ling2, WANG Lu2
1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Research Institute of Special Aerospace Materials and Processing Technology, Beijing 100074, China
Abstract:In order to reduce the aircraft mass via high-temperature composite structures, and to extend the application of domestic T800 carbon fiber reinforced cyanate ester composites system, the sizing was analyzed, and the cyanate ester formulation was designed for the carbon fiber based on the sizing analysis. Meanwhile, the mechanical properties and heat resistance of the domestic T800 carbon fiber/cyanate ester composites were studied, and the effect of matrix on the composites interface was studied. The results indicate that the sizing of domestic T800 carbon fibers contain epoxy functional groups. With the formula optimized cyanate ester resin, the domestic T800 carbon fiber composite has greater mechanical property with the retention rate exceeding 74.8% at room-temperature with humidity, the retention of mechanical property is more than 57% at 200℃, and the glass transition temperature is 226℃. The composite exhibits excellent thermal mechanical and interfacial properties.
[1] 赵云峰,孙宏杰,李仲平. 航天先进树脂基复合材料制造技术及其应用[J]. 宇航材料工艺, 2016(4):1-7. ZHAO Y F, SUN H J, LI Z P. Manufacturing technology and its application of aerospace advanced polymer matrix composites[J]. Aerospace Materials & Technology, 2016(4):1-7.
[2] ROBERTSON F C. Resin transfer moulding of aerospace resins:a review[J]. British Polymer Journal, 1988, 20(5):417-429.
[3] 益小苏. 先进复合材料技术研究与发展[M]. 北京:国防工业出版社, 2006:84-88. YI X S. Research and development of advanced composites technology[M]. Beijing:National Defense Industry Press, 2006:84-88.
[4] 陈伟明,王成忠,周同悦,等. 高性能T800碳纤维复合材料树脂基体[J]. 复合材料学报,2006,23(4):29-35. CHEN W M, WANG C Z, ZHOU T Y, et al. High-performance resin matrix for T800 carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2006, 23(4):29-35.
[5] 王晓洁,梁国正,张炜,等. 高性能碳纤维表面分析及其力学性能研究[J]. 航空材料学报,2006,26(4):119-122. WANG X J, LIANG G Z, ZHANG W, et al. Surface analysis of high property carbon fibers and study on mechanical properties[J]. Journal of Aeronautical Materials,2006, 26(4):119-122.
[6] 罗云烽,李阳,肇研,等. 国产T800碳纤维表面特征及其复合材料微观界面性能[J]. 材料工程,2014(9):83-88. LUO Y F, LI Y, ZHAO Y, et al. Surface characteristics of domestic T800-carbon fibers and microscopic inter-phase proper-ties of composites[J]. Journal of Materials Engineering, 2014(9):83-88.
[7] 井敏,谭婷婷,王成国,等. 东丽T800H与T800S碳纤维的微观结构比较[J]. 材料科学与工艺, 2015, 36(2):9-23. JING M, TAN T T, WANG C G, et al. Comparison on the micro-structure of Toray T800H and T800S carbon fiber[J]. Materials Science & Technology, 2015, 36(2):9-23.
[8] 关洪涛,李辅安,程勇. 加捻对T800碳纤维拉伸性能的影响[J]. 纤维复合材料, 2011(3):30-33. GUAN H T, LI F A, CHENG Y. The effect of twisting on the tensile properties of T800 carbon fiber[J]. Fiber Composites, 2011(3):30-33.
[9] LEE J, SOUTIS C. Thickness effect on the compressive strength of T800/924C carbon fiber epoxy laminates[J]. Composites Part A, 2005, 36(2):213-227.
[10] IVENS J, ALBERTSEN H, WEVERS M, et al. Interlaminar fracture toughness of CFRP influenced by fiber surface treatment Ⅱ:modeling of the interface effect[J]. Composites Science and Technology, 1995, 54(2):147-159.
[11] MARIETA C, SCHULZ E, IRUSTA L, et al. Evaluation of fiber surface treatment and toughing of thermoset matrix on the interfacial behaviour of carbon fiber reinforced cyanate matrix composites[J]. Composites Science and Technology, 2005, 65(14):2189-2197.
[12] 张宝艳.先进复合材料界面技术[M].北京:航空工业出版社,2017. ZHANG B Y. Interfacial technology of advanced composites[M]. Beijing:Press of Aviation Industry,2017.
[13] 欧秋仁,嵇培军,肖军,等. 适于RTM的氰酸酯树脂制备及性能[J]. 宇航材料工艺,2015,45(4):79-82. OU Q R, JI P J, XIAO J, et al. Properties of modified cyanate ester for RTM[J]. Aerospace Materials & Technology, 2015,45(4):79-82.
[14] 欧秋仁,嵇培军,肖军,等. 环氧树脂改性双酚A型氰酸酯树脂的性能研究[J]. 功能材料2015,46(增刊2):129-134. OU Q R, JI P J, XIAO J, et al. Study on properties of bisph-enol A cyanate ester modified by epoxy resin[J]. Journal of Function Materials, 2015, 46(Suppl 2):129-134.
[15] NAIR C P R, MATHEW D, NIAN K N. Cyanate ester resins recent developments[J]. Advanced Polymer Science, 2001, 155:155-199.
[16] 任芳. 石墨烯/环氧改性氰酸酯吸波复合材料的制备与性能研究[D]. 西安:西北工业大学, 2015. REN F. Fabrication and characterization of graphene/epoxy modified cyanate ester microwave absorbing composites[D]. Xi'an:Northwestern Polytechnical University, 2015.
[17] 孙周强. 耐高温氰酸酯树脂基透波复合材料的研究[D]. 苏州:苏州大学, 2009. SUN Z Q. Study on heat resistant wave-transparent composites based on cyanate ester resin[D].Suzhou:Soochow University,2009.
[18] 吴金剑,谢佳武,王志娟,等. F-48环氧树脂改性双酚A型氰酸酯树脂的研究[J]. 材料导报, 2014, 28(7):91-94. WU J J, XIE J W, WANG Z J, et al. Study of F-48 epoxy resin modified biphenol A cyanate ester resin[J]. Materials Review, 2014, 28(7):91-94.
[19] 王金合,梁国正,王结良,等. 环氧树脂改性双环戊二烯型氰酸酯树脂固化反应性[J]. 复合材料学报, 2007, 24(2):55-60. WANG J H, LIANG G Z, WANG J L,et al. Cure reaction in the blend of dicyclopentandiene bisphenol cyanate ester with epoxy resin[J]. Acta Materiae Compositae Sinica, 2007, 24(2):55-60.
[20] 李金焕,王瑞海,王堂洋,等. 石墨烯/氰酸酯-环氧树脂复合材料的制备和性能[J]. 复合材料学报, 2014, 31(5):1154-1159. LI J H, WANG R H, WANG T Y, et al. Preparation and properties of graphene/cyanate ester epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1154-1159.
[21] LIANG G Z, ZHANG M X. Enhancement of processability of cyanate ester resin via copolymerization with epoxy resin[J]. Journal of Applied Polymer Science, 2002, 85:2377-2381.