Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 1-9    DOI: 10.11868/j.issn.1001-4381.2018.000306
  综述 本期目录 | 过刊浏览 | 高级检索 |
氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展
杨瑞1,2, 齐哲1,2, 杨金华1,2, 焦健1,2
1. 中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095;
2. 中国航发北京航空材料研究院 航空材料先进腐蚀与防护重点实验室, 北京 100095
Research Progress in Oxide/Oxide Ceramic Matrix Composites and Processing Technologies
YANG Rui1,2, QI Zhe1,2, YANG Jin-hua1,2, JIAO Jian1,2
1. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Key Laboratory of Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(30808 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 氧化物/氧化物陶瓷基复合材料具有低密度、耐高温、抗氧化等特点,是应用于高温有氧环境的理想候选材料,在航空航天热端部件如发动机燃烧室、尾喷管等部位有着巨大的应用潜力。本文从氧化物纤维、陶瓷基体、复合材料设计以及制备工艺等方面综述了氧化物/氧化物陶瓷基复合材料的研究进展。重点阐述了氧化物/氧化物陶瓷基复合材料的设计方法,包括界面层的选择以及多孔基体的设计,详细介绍了复合材料的制备工艺,特别是预浸料工艺。最后对国外考核情况进行了简述,指出了其在航空发动机高温热端部件上的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨瑞
齐哲
杨金华
焦健
关键词 氧化物陶瓷基复合材料界面层多孔基体制备工艺    
Abstract:Oxide/oxide ceramic matrix composites (CMCs) are ideal candidate materials in high-temperature and oxidative environment, due to their low density, high temperature resistance, oxidation resistance, etc, with tremendous potential applications in hot section components of aero engines, such as combustor liners, shrouds, vanes, blades, exhaust nozzle, etc. The research progress of oxide/oxide CMCs was reviewed, including the development of oxide fibers, ceramic matrix, composite material design and processing technologies, with an emphasis on the design of oxide/oxide CMCs, including the selection of interphase and the design of porous matrix, and the processing technologies of CMC materials, especially the prepreg method were introduced in details. Last, the evaluation of oxide/oxide CMCs abroad was summarized, and their future application in hot section components of aero engines was pointed out.
Key wordsoxide    ceramic matrix composite    interphase    porous matrix    processing technology
收稿日期: 2018-03-23      出版日期: 2018-12-18
中图分类号:  V257  
通讯作者: 焦健(1976-),男,高级工程师,博士,研究方向为陶瓷基复合材料,联系地址:北京市81信箱5分箱(100095),E-mail:jiaojian_2010@sina.com     E-mail: jiaojian_2010@sina.com
引用本文:   
杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
YANG Rui, QI Zhe, YANG Jin-hua, JIAO Jian. Research Progress in Oxide/Oxide Ceramic Matrix Composites and Processing Technologies. Journal of Materials Engineering, 2018, 46(12): 1-9.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000306      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/1
[1] 焦健,陈明伟. 新一代发动机高温材料-陶瓷基复合材料的制备、性能及应用[J]. 航空制造技术, 2014(7):62-69. JIAO J, CHEN M W. New generation of high-temperature material for engine-preparation, property and application of ceramic matirx composites[J]. Aeronautical Manufacturing Technology, 2014(7):62-69.
[2] YANG J H, JIAO J, WANG L, et al. Spark plasma sintering of silicon carbide powders with carbon and boron as additives[C]//Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development. Toronto:John Wiley & Sons, 2017:137-143.
[3] CORMAN G S, LUTHRA K L. Development history of GE's prepreg melt infiltrated ceramic matrix composite material and applications[J]. Comprehensive Composite Materials Ⅱ, 2018, 5:325-338.
[4] ZOK F W. Developments in oxide fiber composites[J]. Journal of the American Ceramic Society, 2006, 89(11):3309-3324.
[5] LEBEL L, TURENNE S, BOUKHILI R. An experimental apparatus and procedure for the simulation of thermal stresses in gas turbine combustion chamber panels made of ceramic matrix composites[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(9):091502.
[6] SINGH A K, SABELKIN V, MALL S. Fatigue behavior of double-edge notched oxide/oxide ceramic matrix composite in a combustion environment[J]. Journal of Composite Materials, 2017, 51(26):3669-3683.
[7] SINGH A K, SABELKIN V, MALL S. Creep-rupture behaviour of notched oxide/oxide ceramic matrix composite in combustion environment[J]. Advances in Applied Ceramics, 2017, 117(1):30-41.
[8] LANSER R L, RUGGLES-WRENN M B. Tension-compression fatigue of a NextelTM720/alumina composite at 1200℃in air and in steam[J]. Applied Composite Materials, 2016, 23(4):707-717.
[9] BEHRENDT T, HACKEMANN S, MECHNICH P, et al. Development and test of oxide/oxide ceramic matrix composites combustor liner demonstrators for aero-engines[J]. Journal of Engineering for Gas Turbines and Power, 2016, 139(3):031507.
[10] KISER J D, BANSAL N P, SZELAGOWSKI J. Oxide/oxide ceramic matrix composite (CMC) exhaust mixer development in the NASA environmentally responsible aviation (ERA) project[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. Montréal:ASME, 2015:1-15.
[11] ASKARINEJAD S, RAHBAR N, SABELKIN V, et al. Mechanical behavior of a notched oxide/oxide ceramic matrix composite in combustion environment:experiments and simulations[J]. Composite Structures, 2015, 127(3):77-86.
[12] VAN ROODE M, BHATTACHARYA A K. Durability of oxide/oxide ceramic matrix composites in gas turbine combustors[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(5):051301.
[13] VAN ROODE M, PRICE J, KIMMEL J, et al. Ceramic matrix composite combustor liners:a summary of field evaluations[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(1):21-30.
[14] SIMON R A, DANZER R. Oxide fiber composites with promising properties for high-temperature structural applications[J]. Advanced Engineering Materials, 2006, 8(11):1129-1134.
[15] MATTONI M A, YANG J Y, LEVI C G, et al. Effects of combustor rig exposure on a porous-matrix oxide composite[J]. International Journal of Applied Ceramic Technology, 2005, 2(2):133-140.
[16] CARELLI E A V, FUJITA H, YANG J Y, et al. Effects of thermal aging on the mechanical properties of a porous matrix ceramic composite[J]. Journal of the American Ceramic Society, 2002, 85(3):595-602.
[17] RICHARDSON G Y, LEI C S, SINGH R N. Influence of turbine engine environment on the mechanical properties of ceramic matrix composites[C]//34th International SAMPE Technical Conference. Maryland:SAMPE, 2002:49-61.
[18] WILSON D M, VISSER L R. High performance oxide fibers for metal and ceramic composites[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(8):1143-1153.
[19] KRENKEL W. Ceramic matrix composites:fiber reinforced ceramics and their applications[M]. Weinheim:Wiley-VCH, 2008.
[20] RUGGLES-WRENN M, HILBURN S. Creep in interlaminar shear of a NextelTM720/aluminosilicate composite at 1100℃ in air and in steam[J]. International Journal of Applied Ceramic Technology, 2015, 12(2):473-480.
[21] RUGGLES-WRENN M B, WHITING B A. Cyclic creep and recovery behavior of NextelTM720/alumina ceramic composite at 1200℃[J]. Materials Science and Engineering:A, 2011, 528(3):1848-1856.
[22] RUGGLES-WRENN M B, OZER M. Creep behavior of NextelTM 720/alumina-mullite ceramic composite with ±45° fiber orientation at 1200℃[J]. Materials Science and Engineering:A, 2010, 527(20):5326-5334.
[23] BEN RAMDANE C, JULIAN-JANKOWIAK A, VALLE R, et al. Microstructure and mechanical behaviour of a NextelTM610/alumina weak matrix composite subjected to tensile and compressive loadings[J]. Journal of the European Ceramic Society, 2017, 37(8):2919-2932.
[24] RUGGLES-WRENN M B, LANSER R L. Tension-compression fatigue of an oxide/oxide ceramic composite at elevated temperature[J]. Materials Science and Engineering:A, 2016, 659:270-277.
[25] RUGGLES-WRENN M B, SZYMCZAK N R. Effects of steam environment on compressive creep behavior of NextelTM720/alumina ceramic composite at 1200℃[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(12):1829-1837.
[26] RUGGLES-WRENN M B, SIEGERT G T, BAEK S S. Creep behavior of NextelTM720/alumina ceramic composite with ±45° fiber orientation at 1200℃[J]. Composites Science and Technology, 2008, 68(6):1588-1595.
[27] RUGGLES-WRENN M B, RADZICKI A T, BAEK S S, et al. Effect of loading rate on the monotonic tensile behavior and tensile strength of an oxide-oxide ceramic composite at 1200℃[J]. Materials Science and Engineering:A, 2008, 492:88-94.
[28] RUGGLES-WRENN M B, HETRICK G, BAEK S S. Effects of frequency and environment on fatigue behavior of an oxide-oxide ceramic composite at 1200℃[J]. International Journal of Fatigue, 2008, 30(3):502-516.
[29] RUGGLES-WRENN M B, BRAUN J C. Effects of steam environment on creep behavior of NextelTM720/alumina ceramic composite at elevated temperature[J]. Materials Science and Engineering:A, 2008, 497:101-110.
[30] RUGGLES-WRENN M B, LAFFEY P. Creep behavior in interlaminar shear of NextelTM720/alumina ceramic composite at elevated temperature in air and in steam[J]. Composites Science and Technology, 2008, 68:2260-2266.
[31] RUGGLES-WRENN M B, MALL S, EBER C A, et al. Effects of steam environment on high-temperature mechanical behavior of NextelTM720/alumina (N720/A) continuous fiber ceramic composite[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(11):2029-2040.
[32] WANG Y, LIU H T, CHENG H F, et al. Application of sol-gel derived mullite in three-dimensional oxide fiber-reinforced composites as porous matrix[J]. Rare Metal Materials and Engineering, 2016, 45(Suppl 1):171-175.
[33] WANG Y, ZHOU Y J, CHENG H F, et al. Gel casting of sol-gel derived mullite based on gelation of modified poly(isobutylene-alt-maleic anhydride)[J]. Ceramics International, 2014, 40(7):10565-10571.
[34] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite-a review[J]. Journal of the European Ceramic Society, 2008, 28(2):329-344.
[35] FAIR G E, HAY R S, BOAKYE E E. Precipitation coating of monazite on woven ceramic fibers:Ⅱ effect of processing conditions on coating morphology and strength retention of NextelTM610 and 720 fibers[J]. Journal of the American Ceramic Society, 2008, 91(5):1508-1516.
[36] FAIR G E, HAY R S, BOAKYE E E. Precipitation coating of monazite on woven ceramic fibers:Ⅰ feasibility[J]. Journal of the American Ceramic Society, 2007, 90(2):448-455.
[37] LEE P Y, YANO T. Fabrication alumina fibers reinforced alumina matrix composites using monazite as interface[J]. Composite Interfaces, 2006, 13(1):19-32.
[38] BOAKYE E E, HAY R S, MOGILEVSKY P, et al. Monazite coatings on fibers:Ⅱ coating without strength degradation[J]. Journal of the American Ceramic Society, 2001, 84(12):2793-2801.
[39] HAY R S, BOAKYE E E. Monazite coatings on fibers:Ⅰ effect of temperature and alumina doping on coated-fiber tensile strength[J]. Journal of the American Ceramic Society, 2001, 84(12):2783-2792.
[40] MORGAN P E D, MARSHALL D B. Ceramic composites of monazite and alumina[J]. Journal of the American Ceramic Society 1995, 78(6):1553-1563.
[41] KELLER K A, MAH T I, PARTHASARATHY T A, et al. Effectiveness of monazite coatings in oxide/oxide composites after long-term exposure at high temperature[J]. Journal of the American Ceramic Society, 2003, 86(2):325-332.
[42] HOLMQUIST M, LUNDBERG R, SUDRE1 O, et al. Alumina/alumina composite with a porous zirconia interphase-processing, properties and component testing[J]. Journal of the European Ceramic Society, 2000, 20(5):599-606.
[43] PARLIER M, RITTI M H. State of the art and perspectives for oxide/oxide composites[J]. Aerospace Science and Technology, 2003, 7(3):211-221.
[44] KELLER K A, MAH T I, PARTHASARATHY T A, et al. Fugitive interfacial carbon coatings for oxide/oxide composites[J]. Journal of the American Ceramic Society, 2000, 83(2):329-336.
[45] WEAVER J H, YANG J, ZOK F W. Control of interface properties in oxide composites via fugitive coatings[J]. Journal of the American Ceramic Society, 2008, 91(12):4003-4008.
[46] FUJITA H, JEFFERSON G, MCMEEKING R M, et al. Mullite/alumina mixtures for use as porous matrices in oxide fiber composites[J]. Journal of the American Ceramic Society, 2004, 87(2):261-267.
[47] EVANS A G, MARSHALL D B, ZOK F W, et al. Recent advances in oxide-oxide composites technology[J]. Advanced Composite Materials, 1999, 8(1):17-23.
[48] FUJITA H, LEVI C G, ZOK F W, et al. Controlling mechanical properties of porous mullite/alumina mixtures via precursor-derived alumina[J]. Journal of the American Ceramic Society, 2005, 88(2):367-375.
[49] JURF R A, BUTNER S C. Advances in oxide-oxide CMC[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(2):202-205.
[50] BANSAL N P, LAMON J. Ceramic matrix composites:materials, modeling and technology[M]. New Jersey:John Wiley & Sons, 2015.
[51] BANSAL N P. Handbook of ceramic composites[M]. London:Kluwer Academic Publishers, 2005.
[52] YANG J Y, WEAVER J H, ZOK F W, et al. Processing of oxide composites with three-dimensional fiber architectures[J]. Journal of the American Ceramic Society,2009,92(5):1087-1092.
[53] AL-DAWERY I A H, BUTLER E G. Fabrication of high-temperature resistant oxide ceramic matrix composites[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(8):1007-1012.
[54] HOLMQUIST M G, RADSICK T C, SUDRE O H, et al. Fabrication and testing of all-oxide CFCC tubes[J]. Composites Part A:Applied Science and Manufacturing,2003,34(2):163-170.
[55] LEVI C G, YANG J Y, DALGLEISH B J, et al. Processing and performance of an all-oxide ceramic composite[J]. Journal of the American Ceramic Society, 1998, 81(8):2077-2086.
[56] LANGE F F, TU W C, EVANS A G. Processing of damage-tolerant, oxidation-resistant ceramic matrix composites by a precursor infiltration and pyrolysis method[J]. Materials Science and Engineering:A, 1995, 195:145-150.
[57] KAYA C, KAYA F, BUTLER E G, et al. Development and characterisation of high-density oxide fibre-reinforced oxide ceramic matrix composites with improved mechanical properties[J]. Journal of the European Ceramic Society, 2009, 29(9):1631-1639.
[58] GUGLIELMI P O, GARCIA D E, HABLITZEL M P, et al. Processing of all-oxide ceramic matrix composites with RBAO matrices[J]. Journal of Ceramic Science and Technology, 2016, 7(1):87-96.
[59] GOUSHEGIR S M, GUGLIELMI P O, DA SILVA J G P, et al. Fiber-matrix compatibility in an all-oxide ceramic composite with RBAO matrix[J]. Journal of the American Ceramic Society, 2012, 95(1):159-164.
[60] PETERVARY M, STEYER T. Ceramic matrix composites for structural aerospace applications[C]//Proceedings of the 4th International Congress on Ceramics. Chicago:Eileen De Guire, 2012.
[1] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[2] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[3] 卢国锋, 乔生儒. Si-O-C界面层对C/SiC-N复合材料力学性能和热膨胀性能的影响[J]. 材料工程, 2018, 46(7): 83-87.
[4] 刘虎, 杨金华, 周怡然, 吕晓旭, 齐哲, 焦健. 国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展[J]. 材料工程, 2018, 46(11): 1-12.
[5] 史艳华, 赵杉林, 王玲, 梁平, 关学雷. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程, 2017, 45(9): 72-80.
[6] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
[7] 张国芳, 张羊换, 许剑轶, 侯忠辉. Ni-5% RExOy复合添加剂对Mg2Ni电化学储氢性能的影响[J]. 材料工程, 2017, 45(11): 72-77.
[8] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[9] 贺建超, 高进, 邓东, 万发荣. 辐照过程中He对ODS合金中氧化物的影响[J]. 材料工程, 2016, 44(4): 89-93.
[10] 史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
[11] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[12] 刘莹莹, 郑立静, 张虎. 快速凝固Al-Fe-V-Si耐热铝合金研究进展[J]. 材料工程, 2015, 43(11): 91-97.
[13] 刘毅, 魏世丞, 童辉, 田浩亮, 徐滨士. 热喷涂制备吸波涂层的研究进展[J]. 材料工程, 2014, 0(9): 106-112.
[14] 任维鹏, 李青, 肖程波, 宋尽霞, 何利民, 黄光宏, 曹春晓. DZ466合金热障涂层CoCrAlY黏结层1050℃氧化行为[J]. 材料工程, 2014, 0(6): 74-78.
[15] 卢国锋, 乔生儒, 许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014, 0(11): 107-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn