Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (7): 84-91    DOI: 10.11868/j.issn.1001-4381.2018.000307
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理
杨旭东1, 安涛1, 邹田春2,*(), 巩天琛2
1 中国民航大学 中欧航空工程师学院, 天津 300300
2 中国民航大学 民用航空器适航审定技术与管理研究中心, 天津 300300
Effect of hygrothermal environment on mechanical properties and damage mechanism of CFRP
Xu-dong YANG1, Tao AN1, Tian-chun ZOU2,*(), Tian-chen GONG2
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
2 Civil Aircraft Airworthiness Certification Technology and Management Research Center, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(7087 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用加速吸湿法研究经3种湿热环境(湿度为85% RH,温度分别为25,70,85℃)处理后CFRP层合板的吸湿特性,对吸湿前后的碳纤维增强树脂基复合材料(CFRP)层合板分别进行拉伸、压缩、剪切实验,研究其力学性能变化规律,利用扫描电镜和红外光谱分析湿热环境中CFRP层板的损伤机理,最后采用最小二乘法拟合提出湿热环境下CFRP层合板力学性能的预测公式。结果表明:CFRP层合板的吸湿初期特性符合Fick定律;相同湿度下环境温度越高,CFRP的吸湿速率和平衡吸湿率越大,达到吸湿平衡所需时的间越长;3种湿热环境处理后的CFRP层板的90°拉伸和剪切力学性能下降最明显;经湿热环境处理后水分子通过氢键与环氧树脂发生缔合,但CFRP层合板中的各组分未发生化学结构变化;拟合建立的不同湿热条件下力学性能衰退公式与实验结果基本一致。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭东
安涛
邹田春
巩天琛
关键词 CFRP湿热力学性能损伤机理强度预测    
Abstract

The moisture absorption properties of carbon fiber reinforced plastics (CFRP) laminates treated with three kinds of hygrothermal environments (relative humidity 85% RH, temperature 25, 70, 85℃ respectively) were investigated by accelerated moisture absorption method. Tensile, compressive and shear tests were carried out to study the effect of hygrothermal conditions on the mechanical behavior of CFRP laminates. Meanwhile, the damage mechanism of CFRP laminates in hygrothermal environment was analyzed by scanning electron microscopy and infrared spectroscopy. Finally, a formula which could predict the mechanical properties of CFRP laminates in hygrothermal environments was proposed by least square method. The results show that the moisture absorption characteristics of CFRP laminates in preliminary stage accords with Fick's law well. At the same humidity, the CFRP's moisture absorption speeds, the moisture saturation contents and times are increased with the increment of the environmental temperature. The mechanical properties of CFRP laminates in 90°tensile test and shear test are decreased most obviously. Water molecules are associated with epoxy resin through hydrogen bonds after the treatment in hygrothermal environment, however, there is no chemical structure change in the components of the CFRP laminate. The formula of mechanical performance degradation under different hygrothermal conditions is basically consistent with the experimental results.

Key wordsCFRP    hygrothermal    mechanical property    damage mechanism    strength prediction
收稿日期: 2018-03-22      出版日期: 2019-07-19
中图分类号:  TB332  
基金资助:国家自然科学基金项目(51531004);国家自然科学基金项目(51301198);天津市教委科研计划项目(2018KJ255)
通讯作者: 邹田春     E-mail: zoutianchun@126.com
作者简介: 邹田春(1976-), 男, 副教授, 博士, 研究方向为复合材料制备与性能, 联系地址:天津市中国民航大学民用航空器适航审定技术与管理研究中心(300300), zoutianchun@126.com
引用本文:   
杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
Xu-dong YANG, Tao AN, Tian-chun ZOU, Tian-chen GONG. Effect of hygrothermal environment on mechanical properties and damage mechanism of CFRP. Journal of Materials Engineering, 2019, 47(7): 84-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000307      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/84
Fig.1  CFRP层板在湿度85%RH不同温度下的吸湿曲线
Relative humidity/ %RH Environmental temperature/℃ Moisture satu- ration time/h Moisture saturation content/%
25 25 0.126
85 70 168 0.656
85 262 0.852
Table 1  不同湿热环境下试样达到吸湿饱和所用时间及饱和吸湿率
Fig.2  在不同吸湿状态后CFRP层合板的力学性能(a)拉伸强度;(b)压缩强度;(c)纵横剪切强度
Fig.3  CFRP层板经不同湿热环境处理后的红外光谱图
Fig.4  CFRP层合板在不同吸湿状态后不同方向的拉伸断口SEM图
(a)25℃吸湿饱和,0°方向;(b)70℃吸湿饱和,0°方向;(c), (d)干燥状态,90°方向;(e), (f)85℃吸湿饱和,90°方向
Fig.5  CFRP层合板在不同吸湿状态后不同方向的压缩断口SEM图
(a)25℃吸湿饱和,0°方向;(b)85℃吸湿饱和,0°方向;(c)25℃吸湿饱和,90°方向;(d)85℃吸湿饱和,90°方向
Relative humidity/%RH Temperature/℃ T/h H/h
0 70 235.2 0
25 6.25 21.25
85 70 117.6 142.8
85 222.7 222.7
Table 2  CFRP层板的环境等效作用时间
Mechanical test A1 A2 B1 B2
0° tensile test 25.4501 1.1432 0.0080 1.5210×106
90° tensile test 59.3442 3.1125 1.4524×10-5 0.1759
0° compressive test 7.3349×10-4 21.4918 9.7800×105 0.0108
90° compressive test 6.7806×10-5 4.2482 2.2900×106 0.5419
Shear test 1.4764×10-4 0.3076 1.5828×107 4.4965×103
Table 3  参数数值解
Fig.6  不同湿热条件下实验值与公式预测值对比
(a)0°拉伸强度; (b)90°拉伸强度; (c)0°压缩强度; (d)90°压缩强度; (e)纵横剪切强度
1 SOUTIS C . Carbon fiber reinforced plastics in aircraft construction[J]. Materials Science and Engineering:A, 2005, 412 (1/2): 171- 176.
2 FRIEDRICH K , ALMAJID A A . Manufacturing aspects of advanced polymer composites for automotive applications[J]. Applied Composite Materials, 2013, 20 (2): 107- 128.
doi: 10.1007/s10443-012-9258-7
3 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32 (2): 317- 322.
3 MA L M , ZHANG J Z , YUE G Q , et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32 (2): 317- 322.
4 张利军, 肇研, 罗云烽, 等. 湿热循环对CCF300/QY8911复合材料界面性能的影响[J]. 材料工程, 2012, (2): 25- 29.
doi: 10.3969/j.issn.1001-4381.2012.02.007
4 ZHANG L J , ZHAO Y , LUO Y F , et al. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments[J]. Journal of Materials Engineering, 2012, (2): 25- 29.
doi: 10.3969/j.issn.1001-4381.2012.02.007
5 KUMAR S B , SRIDHAR I , SIVASHANKER S . Influence of humid environment on the performance of high strength structural carbon fiber composites[J]. Materials Science and Engineering:A, 2008, 498 (1/2): 174- 178.
6 GENNA S , TROVALUSCI F , TAGLIAFERRI V . Indentation test to study the moisture absorption effect on CFRP composite[J]. Composites Part B:Engineering, 2017, 124, 1- 8.
doi: 10.1016/j.compositesb.2017.05.053
7 JIA Z , LI T , CHIANG F , et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2018, 154, 53- 63.
doi: 10.1016/j.compscitech.2017.11.015
8 EFTEKHARI M , FATEMI A . Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects[J]. Polymer Testing, 2016, 51, 151- 164.
doi: 10.1016/j.polymertesting.2016.03.011
9 吴以婷, 葛东云, 李辰. 湿热环境下Carbon/Epoxy复合材料层合板动态压缩性能[J]. 复合材料学报, 2016, 33 (2): 259- 264.
9 WU Y T , GE D Y , LI C . Dynamic compressive properties of carbon/epoxy composite laminates under hygrothermal environment[J]. Acta Materiae Compositae Sinica, 2016, 33 (2): 259- 264.
10 ZHONG Y , JOSHI S C . Impact resistance of hygrothermally conditioned composite laminates with different lay-ups[J]. Journal of Composite Materials, 2015, 49 (7): 829- 841.
doi: 10.1177/0021998314526078
11 张晓云, 曹东, 陆峰, 等. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44 (4): 82- 88.
11 ZHANG X Y , CAO D , LU F , et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media[J]. Journal of Materials Engineering, 2016, 44 (4): 82- 88.
12 ALMEIDA J H S , SOUZA S D B , BOTELHO E C , et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning[J]. Journal of Materials Science, 2016, 51 (9): 4697- 4708.
doi: 10.1007/s10853-016-9787-9
13 BOTELHO E C , PARDINI L C , REZENDE M C . Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J]. Journal of Materials Science, 2006, 41 (21): 7111- 7118.
doi: 10.1007/s10853-006-0933-7
14 MAGGANA C , PISSIS P . Water sorption and diffusion studies in an epoxy resin system[J]. Journal of Polymer Science Part B:Polymer Physics, 1999, 37 (11): 1165- 1182.
doi: 10.1002/(ISSN)1099-0488
15 TOSCANO A , PITARRESI G , SCAFIDI M , et al. Water diffusion and swelling stresses in highly crosslinked epoxy matrices[J]. Polymer Degradation and Stability, 2016, 133, 255- 263.
doi: 10.1016/j.polymdegradstab.2016.09.004
16 ZAFAR A , BERTOCCO F , SCHJØDT-THOMSEN J , et al. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites[J]. Composites Science and Tech-nology, 2012, 72 (6): 656- 666.
doi: 10.1016/j.compscitech.2012.01.010
17 WANG Z , HUANG X , XIAN G , et al. Effects of surface trea-tment of carbon fiber:tensile property, surface characteristics, and bonding to epoxy[J]. Polymer Composites, 2016, 37 (10): 2921- 2932.
doi: 10.1002/pc.v37.10
18 冯青, 李敏, 顾轶卓, 等. 不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究[J]. 复合材料学报, 2010, 27 (6): 16- 20.
18 FENG Q , LI M , GU Y Z , et al. Experimental research on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2010, 27 (6): 16- 20.
19 BULMANIS V N , GUNYAEV G M , KRIVONS V V . Risas-pavlam[M]. Moscow: USSR, 1991.
20 张颖军, 朱锡, 梅志远, 等. 聚合物基复合材料老化剩余强度等效预测方法研究[J]. 材料导报, 2012, 26 (8): 150- 152.
doi: 10.3969/j.issn.1005-023X.2012.08.038
20 ZHANG Y J , ZHU X , MEI Z Y , et al. Equivalent estimating methods of ageing on polymer matrix composites residual strength[J]. Materials Review, 2012, 26 (8): 150- 152.
doi: 10.3969/j.issn.1005-023X.2012.08.038
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn