The hybrid capacitors were assembled by using lithium titanate/multi-walled carbon nanotubes composite as anode and activated carbon/nickel cobalt manganese acid lithium composite as cathode. The electrode materials were analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractomer (XRD), Raman spectrometer (Raman) and thermal gravimetric analyzer (TGA). The electrochemical performance of hybrid capacitors was tested by galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results indicate that the addition of multi-walled carbon nanotubes and lithium nickel cobalt manganese oxide can greatly improve the electrochemical performance of hybrid capacitors. The hybrid capacitors achieve a specific capacitance of 161.5 mAh/g at the current density of 0.1 A/g with an additive of 5% (mass fraction) multi-walled carbon nanotubes. The maximum power density and energy density reach 993.2 W/kg and 52.2 Wh/kg in the current range of 0.1-1 A/g, respectively. The continuous galvanostatic charge-discharge cycling tests reveal that the hybrid capacitors maintain capacitance rate retention of 92.2% and Coulomb efficiency of 99.1% after 5000 cycles. The hybrid capacitors show an excellent cycle performance with high energy and power density.
MILLER J R , SIMON P . Materials science:electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
2
KRAUSE A , KOSSYREV P , OLJACA M , et al. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black[J]. Journal of Power Sources, 2011, 196 (20): 8836- 8842.
doi: 10.1016/j.jpowsour.2011.06.019
3
LIU C , KOYYALAMUDI B B , LI L , et al. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors[J]. Carbon, 2016, 109, 163- 172.
doi: 10.1016/j.carbon.2016.07.071
4
SMITH P H , SEPE R B , WATERMAN K G , et al. Development and analysis of a lithium carbon monofluoride battery-lithium ion capacitor hybrid system for high pulse-power applications[J]. Journal of Power Sources, 2016, 327, 495- 506.
doi: 10.1016/j.jpowsour.2016.07.035
5
AMATUCCI G G , BADWAY F , PASQUIER A D , et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148 (8): A930- A939.
doi: 10.1149/1.1383553
6
HU X B , HUAI Y J , LIN Z J , et al. A (LiFePO4-AC)/Li4Ti5O12 hybrid battery capacitor[J]. Journal of the Electrochemical Society, 2007, 154 (11): 1026- 1030.
doi: 10.1149/1.2779947
7
RONG C , CHEN S , HAN J , et al. Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4[J]. Journal of Renewable & Sustainable Energy, 2015, 7 (2): 3243.
8
ZHANG S L , MA L H , LI X G , et al. Research on lithium ion battery material LiCoO2 for hybrid supercapacitor[J]. Advanced Materials Research, 2011, 287/290, 1565- 1568.
doi: 10.4028/www.scientific.net/AMR.287-290.1565
9
NI J , HUANG Y , GAO L . A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. Journal of Power Sources, 2013, 223, 306- 311.
doi: 10.1016/j.jpowsour.2012.09.047
10
WANG J , SHEN L , LI H , et al. Mesoporous Li4Ti5O12 /carbon nanofibers for high-rate lithium-ion batteries[J]. Journal of Alloys & Compounds, 2014, 587 (7): 171- 176.
11
LIN Z , ZHU W , WANG Z , et al. Synthesis of carbon-coated Li4Ti5O12, nanosheets as anode materials for high-performance lithium-ion batteries[J]. Journal of Alloys & Compounds, 2016, 687, 232- 239.
12
BELHAROUAK I , KOENIG G M , AMINE K . Electrochemistry and safety of Li4Ti5O12, and graphite anodes paired with LiMn2O4, for hybrid electric vehicle Li-ion battery applications[J]. Journal of Power Sources, 2011, 196 (23): 10344- 10350.
doi: 10.1016/j.jpowsour.2011.08.079
13
LEE B G , LEE S H . Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density[J]. Journal of Power Sources, 2017, 343, 545- 549.
doi: 10.1016/j.jpowsour.2017.01.094
14
DSOKE S , FUCHS B , GUCCIARDI E , et al. The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12[J]. Journal of Power Sources, 2015, 282, 385- 393.
doi: 10.1016/j.jpowsour.2015.02.079
15
DECAUX C , LOTA G , RAYMUNDOPINERO E , et al. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane) sulfonimide-based electrolyte[J]. Electrochimica Acta, 2012, 86 (1): 282- 286.
LU Z M , ZHAO D L , LIU Y F , et al. The influence of graphitization on the structure of carbon nanotubes[J]. Transactions of Materials and Heat Treatment, 2005, 26 (6): 9- 11.
ZHANG L L , XU F F , FENG J W , et al. Effect of graphitization on the structures and conducting property of carbon nanotubes[J]. Journal of Inorgan Materials, 2009, 24 (3): 535- 538.
18
HSIAO K C , LIAO S C , CHEN J M . Microstructure effect on the electrochemical property of LiTiO as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53 (24): 7242- 7247.
doi: 10.1016/j.electacta.2008.05.002
19
CAI M Y , SUN X G , CHEN W , et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode[J]. Journal of Materials Science, 2018, 53 (1): 749- 758.
doi: 10.1007/s10853-017-1524-5
20
DOKKO K , FUJITA Y , MOHAMEDI M , et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode:part Ⅱ disordered carbon[J]. Electrochimica Acta, 2001, 47 (6): 933- 938.
doi: 10.1016/S0013-4686(01)00809-X
21
KOTZ R , CARLEN M . Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45 (15/16): 2483- 2498.