Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 128-135    DOI: 10.11868/j.issn.1001-4381.2018.000310
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器
陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成
南昌大学 机电工程学院, 南昌 330031
AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs hybrid capacitors
CHEN Wei, SUN Xiao-gang, HU Hao, WANG Jie, LI Xu, LIANG Guo-dong, HUANG Ya-pan, WEI Cheng-cheng
College of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(5586 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以钛酸锂(Li4Ti5O12)/多壁碳纳米管(MWCNTs)复合材料为负极、活性炭(AC)/镍钴锰酸锂(Li(NiCoMn)O2)复合材料为正极,组装成混合型电容器并研究其电化学性能。利用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射仪(XRD),拉曼光谱仪(Raman),热重分析仪(TGA)对电极材料进行分析,通过恒流充放电(GCD)和交流阻抗谱(EIS)研究混合型电容器的电化学性能。结果表明:掺杂适量MWCNTs和镍钴锰酸锂可提高电容器的电化学性能。当MWCNTs质量分数为5%时,在电流密度为0.1 A/g下恒流充放电时比容量达161.5 mAh/g。在0.1~1 A/g时,最大功率密度和最大能量密度分别为993.2 W/kg和52.2 Wh/kg。5000周次恒流充放电循环后,容量保持率在92.2%左右,库仑效率仍有99.1%,展现出较高的能量密度和功率密度,并具有优异的循环性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈玮
孙晓刚
胡浩
王杰
李旭
梁国东
黄雅盼
魏成成
关键词 多壁碳纳米管镍钴锰酸锂钛酸锂活性炭混合电容    
Abstract:The hybrid capacitors were assembled by using lithium titanate/multi-walled carbon nanotubes composite as anode and activated carbon/nickel cobalt manganese acid lithium composite as cathode. The electrode materials were analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractomer (XRD), Raman spectrometer (Raman) and thermal gravimetric analyzer (TGA). The electrochemical performance of hybrid capacitors was tested by galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results indicate that the addition of multi-walled carbon nanotubes and lithium nickel cobalt manganese oxide can greatly improve the electrochemical performance of hybrid capacitors. The hybrid capacitors achieve a specific capacitance of 161.5 mAh/g at the current density of 0.1 A/g with an additive of 5% (mass fraction) multi-walled carbon nanotubes. The maximum power density and energy density reach 993.2 W/kg and 52.2 Wh/kg in the current range of 0.1-1 A/g,respectively. The continuous galvanostatic charge-discharge cycling tests reveal that the hybrid capacitors maintain capacitance rate retention of 92.2% and Coulomb efficiency of 99.1% after 5000 cycles. The hybrid capacitors show an excellent cycle performance with high energy and power density.
Key wordsmulti-walled carbon nanotubes    nickel cobalt manganese acid lithium    lithium titanate    activated carbon    hybrid capacitor
收稿日期: 2018-03-23      出版日期: 2020-01-09
中图分类号:  O646  
基金资助: 
通讯作者: 孙晓刚(1957-),男,教授,研究方向为碳纳米管及锂离子电池,联系地址:江西省南昌市红谷滩新区南昌大学前湖校区机电工程学院(330031),E-mail:xiaogangsun@163.com     E-mail: xiaogangsun@163.com
引用本文:   
陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
CHEN Wei, SUN Xiao-gang, HU Hao, WANG Jie, LI Xu, LIANG Guo-dong, HUANG Ya-pan, WEI Cheng-cheng. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs hybrid capacitors. Journal of Materials Engineering, 2020, 48(1): 128-135.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000310      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/128
[1] MILLER J R,SIMON P.Materials science:electrochemical capacitors for energy management[J].Science,2008,321(5889):651-652.
[2] KRAUSE A,KOSSYREV P,OLJACA M,et al.Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black[J].Journal of Power Sources,2011,196(20):8836-8842.
[3] LIU C,KOYYALAMUDI B B,LI L,et al.Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors[J].Carbon,2016,109:163-172.
[4] SMITH P H,SEPE R B,WATERMAN K G,et al.Development and analysis of a lithium carbon monofluoride battery-lithium ion capacitor hybrid system for high pulse-power applications[J].Journal of Power Sources,2016,327:495-506.
[5] AMATUCCI G G,BADWAY F,PASQUIER A D,et al.An asymmetric hybrid nonaqueous energy storage cell[J].Journal of the Electrochemical Society,2001,148(8):A930-A939.
[6] HU X B,HUAI Y J,LIN Z J,et al.A (LiFePO4-AC)/Li4Ti5O12 hybrid battery capacitor[J].Journal of the Electrochemical Society,2007,154(11):1026-1030.
[7] RONG C,CHEN S,HAN J,et al.Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4[J].Journal of Renewable & Sustainable Energy,2015,7(2):3243.
[8] ZHANG S L,MA L H,LI X G,et al.Research on lithium ion battery material LiCoO2 for hybrid supercapacitor[J].Advanced Materials Research,2011,287/290:1565-1568.
[9] NI J,HUANG Y,GAO L.A high-performance hard carbon for Li-ion batteries and supercapacitors application[J].Journal of Power Sources,2013,223:306-311.
[10] WANG J,SHEN L,LI H,et al.Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries[J].Journal of Alloys & Compounds,2014,587(7):171-176.
[11] LIN Z,ZHU W,WANG Z,et al.Synthesis of carbon-coated Li4Ti5O12,nanosheets as anode materials for high-performance lithium-ion batteries[J].Journal of Alloys & Compounds,2016,687:232-239.
[12] BELHAROUAK I,KOENIG G M,AMINE K.Electrochemistry and safety of Li4Ti5O12,and graphite anodes paired with LiMn2O4,for hybrid electric vehicle Li-ion battery applications[J].Journal of Power Sources,2011,196(23):10344-10350.
[13] LEE B G,LEE S H.Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density[J].Journal of Power Sources,2017,343:545-549.
[14] DSOKE S,FUCHS B,GUCCIARDI E,et al.The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12[J].Journal of Power Sources,2015,282:385-393.
[15] DECAUX C,LOTA G,RAYMUNDOPINERO E,et al.Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane) sulfonimide-based electrolyte[J].Electrochimica Acta,2012,86(1):282-286.
[16] 卢振明,赵东林,刘云芳,等.石墨化处理对碳纳米管结构的影响[J].材料热处理学报,2005,26(6):9-11. LU Z M,ZHAO D L,LIU Y F,et al.The influence of graphitization on the structure of carbon nanotubes[J].Transactions of Materials and Heat Treatment,2005,26(6):9-11.
[17] 张琳琳,许钫钫,冯景伟,等.石墨化对碳纳米管结构与电学性能的影响[J].无机材料学报,2009,24(3):535-538. ZHANG L L,XU F F,FENG J W,et al.Effect of graphitization on the structures and conducting property of carbon nanotubes[J].Journal of Inorgan Materials,2009,24(3):535-538.
[18] HSIAO K C,LIAO S C,CHEN J M.Microstructure effect on the electrochemical property of LiTiO as an anode material for lithium-ion batteries[J].Electrochimica Acta,2008,53(24):7242-7247.
[19] CAI M Y,SUN X G,CHEN W,et al.Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode[J].Journal of Materials Science,2018,53(1):749-758.
[20] DOKKO K,FUJITA Y,MOHAMEDI M,et al.Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode:part Ⅱ disordered carbon[J].Electrochimica Acta,2001,47(6):933-938.
[21] KOTZ R,CARLEN M.Principles and applications of electrochemical capacitors[J].Electrochimica Acta,2000,45(15/16):2483-2498.
[1] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[2] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[3] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[4] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[5] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[6] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[7] 张浩, 黄新杰, 宗志芳, 刘秀玉. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6): 67-72.
[8] 马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
[9] 刘强, 柯黎明, 刘奋成, 黄春平. 多壁碳纳米管增强铝基复合材料的高温力学性能[J]. 材料工程, 2016, 44(4): 20-25.
[10] 郝勇敢, 邵先坤, 唐海娣, 汪涛, 刘佳佳, 李本侠. 石蜡/TiO2/活性炭复合相变材料的制备及其性能[J]. 材料工程, 2016, 44(11): 51-55.
[11] 代士维, 张乐天, 李俊, 乔新峰, 马跃. 蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响[J]. 材料工程, 2015, 43(10): 7-13.
[12] 郭伟玲, 李恩重, 王海斗, 杨大祥. MWCNTs催化Ru(bpy)32+阴极电致化学发光[J]. 材料工程, 2013, 0(12): 63-67,73.
[13] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[14] 邹田春, 冯振宇, 赵乃勤, 师春生. 活性炭纤维/树脂复合吸波材料的研究[J]. 材料工程, 2011, 0(2): 22-25.
[15] 耿煜, 宋燕, 钟明, 李鹏, 郭全贵, 刘朗. 酚醛基活性炭布的制备及电化学性能研究[J]. 材料工程, 2011, 0(10): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn