Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (7): 139-145    DOI: 10.11868/j.issn.1001-4381.2018.000332
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种第三代单晶高温合金中高温横向持久性能
杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光
中国航发北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095
Transverse stress rupture properties of a third generation single crystal superalloy at medium and elevated temperatures
YANG Wan-peng, LI Jia-rong, LIU Shi-zhong, ZHAO Jin-qian, SHI Zhen-xue, WANG Xiao-guang
Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6234 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 研究一种镍基第三代单晶(single crystal,SC)高温合金在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下的横向持久性能。结果表明:在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下,该合金横向持久寿命与伸长率均低于纵向;横向与纵向持久断裂后的位错组态特征一致,760℃/800 MPa条件下断裂后γ'相中存在相交的层错,而1100℃/137 MPa条件下断裂后γ/γ'相界面形成位错缠结与高密度位错网;横向与纵向在760℃/800 MPa条件下为类解理断裂与韧窝断裂的混合断裂,而在980℃/250 MPa与1100℃/137 MPa条件下为韧窝断裂;第一代单晶高温合金DD3、第二代单晶高温合金DD6与本研究的第三代单晶高温合金中高温横向持久断裂机制基本一致;外应力方向垂直于定向凝固过程形成的一次枝晶间界面,是横向持久性能低于纵向的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨万鹏
李嘉荣
刘世忠
赵金乾
史振学
王效光
关键词 第三代单晶高温合金横向持久性能断裂机制位错组态    
Abstract:At the conditions of 760℃/800 MPa, 980℃/250 MPa and 1100℃/137 MPa, the transv-erse stress rupture properties of a nickel-based third generation single crystal superalloy were investigated. The results show that the stress rupture life and elongation of the transverse specimens are lower than those of the longitudinal specimens at 760℃/800 MPa, 980℃/250 MPa and 1100℃/137 MPa. The dislocation configurations of the stress ruptured transverse and longitudinal specimens are the same. There are intersecting stacking faults in the γ' phases after stress ruptured at 760℃/800 MPa, and the dislocations are tangled and high densities of dislocation networks have formed at the γ/γ' interface after stress ruptured at 1100℃/137 MPa. The transverse and longitudinal specimens show quasi-cleavage and dimple mixture mode at 760℃/800 MPa, while they both show dimple mode at 980℃/250 MPa and 1100℃/137 MPa. The fracture mechanisms of transverse specimens of the first generation single crystal superalloy DD3, the second generation single crystal superalloy DD6 and the third generation single crystal superalloy in our study at medium and elevated temperatures are basically the same. The main reason for the transverse specimens have a lower stress rupture properties than the longitudinal specimens is that the external applied stress is perpendicular to the primary interdendritic interface formed during the directional solidification process.
Key wordsa third generation single crystal superalloy    transverse stress rupture property    fracture mechanism    dislocation configuration
收稿日期: 2018-03-27      出版日期: 2020-07-21
中图分类号:  TG132.3  
基金资助: 
通讯作者: 杨万鹏(1988-),男,工程师,博士,主要从事单晶高温合金研究,联系地址:北京市81信箱1分箱(100095),E-mail:wp_yang621@126.com     E-mail: wp_yang621@126.com
引用本文:   
杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
YANG Wan-peng, LI Jia-rong, LIU Shi-zhong, ZHAO Jin-qian, SHI Zhen-xue, WANG Xiao-guang. Transverse stress rupture properties of a third generation single crystal superalloy at medium and elevated temperatures. Journal of Materials Engineering, 2020, 48(7): 139-145.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000332      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/139
[1] GELL M, DUHL D N, GIAMEI A F. The development of single crystal superalloy turbine blades[J]. Superalloys,1980:205-214.
[2] LI J R, LIU S Z, WANG X G, et al. Development of a low-cost third generation single crystal superalloy DD9[J]. Superalloys, 2016:57-63.
[3] LIU L, HUANG T W, ZHANG J, et al. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification[J]. Materials Letters, 2007, 61(1):227-230.
[4] YU J, SUN X, ZHAO N, et al. Effect of heat treatment on microstructure and stress rupture life of DD32 single crystal Ni-base superalloy[J]. Materials Science and Engineering:A, 2007, 460/461:420-427.
[5] 喻健,李嘉荣,韩梅,等.近
[001] 取向DD6单晶高温合金980℃/250 MPa持久性能各向异性研究[J].材料工程,2012(4):1-5. YU J, LI J R, HAN M, et al. Anisotropy of stress rupture properties of DD6 single crystal superalloy at 980℃/250 MPa near
[001] orientation[J]. Journal of Materials Engineering, 2012(4):1-5.
[6] SHAH D M, CETEL A. Evaluation of PWA1483 for large single crystal IGT blade applications[J]. Superalloys,2000:295-304.
[7] 陈德厚,吴仲棠,钟振刚,等.DD3单晶高温合金的中温横向持久性能[J].航空材料学报,1985(3):1-5. CHEN D H, WU Z T, ZHONG Z G, et al. Transverse stress rupture properties of single crystal superalloy DD3 at medium temperature[J]. Journal of Aeronautical Materials,1985(3):1-5.
[8] 赵金乾,李嘉荣,刘世忠,等.单晶高温合金DD6的中温横向持久性能[J].材料工程,2009(3):1-5. ZHAO J Q, LI J R, LIU S Z, et al. Transverse stress-rupture properties of single crystal superalloy DD6 at mediate temperature[J]. Journal of Materials Engineering, 2009(3):1-5.
[9] SHI Z X, LI J R, LIU S Z, et al. Effects of dendritic orientation on stress rupture properties of DD6 single crystal superalloy[J]. Journal of Iron and Steel Research, International, 2011, 18(10):66-71.
[10] SHI Z X, LIU S Z, HAN M, et al. Stress rupture properties and fracture behavior of DD6 single crystal superalloy[J]. Materials Science Forum, 2016, 849:468-474.
[11] 刘昌奎,杨胜,何玉怀,等.单晶高温合金断裂特征[J].失效分析与预防,2010,5(4):225-230. LIU C K, YANG S, HE Y H, et al. Fracture features of single crystal superalloys[J]. Failure Analysis and Prevention, 2010, 5(4):225-230.
[12] MACLACHLAN D W, KNOWLES D M. Modelling and prediction of the stress rupture behaviour of single crystal superalloys[J]. Materials Science and Engineering:A, 2001, 302(2):275-285.
[13] HOPGOOD A A, MARTIN J W. The creep behaviour of a nickel-based single-crystal superalloy[J]. Materials Science and Engineering, 1986, 82(1/2):27-36.
[14] LEVERANT G R, DUHL D N. The effect of stress and temperature on the extent of primary creep in directionally solidified nickel-base superalloys[J]. Metallurgical Transactions, 1971, 2(3):907-908.
[15] HAN G M, YU J J, SUN Y L, et al. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99[J]. Materials Science and Engineering:A,2010,527(21):5383-5390.
[16] RAE C M F, REED R C. Primary creep in single crystal superalloys:origins, mechanisms and effects[J]. Acta Materialia, 2007, 55(3):1067-1081.
[17] SHI Z X, LI J R, LIU S Z, et al. Creep properties and microstructure evolution of nickel-based single crystal superalloy at different conditions[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8):2536-2543.
[18] SASS V, FELLER-KNIEPMEIER M. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals[J]. Materials Science and Engineering:A, 1998, 245(1):19-28.
[19] 刘丽荣,金涛,赵乃仁,等.一种镍基单晶高温合金蠕变机制的研究[J].金属学报,2005,41(11):1215-1220. LIU L R, JIN T, ZHAO N R, et al. Creep deformation mechanism in a Ni base single crystal superalloy[J]. Acta Metallurgica Sinica, 2005, 41(11):1215-1220.
[20] YAN G W P, LI J R, LIU S Z, et al. Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760 to 1100℃[J]. Transactions of Nonferrous Metals Society of China, 2019,29(3):558-568.
[21] CHENG K Y, JO C Y, KIM D H, et al. Influence of local chemical segregation on the γ' directional coarsening behavior in single crystal superalloy CMSX-4[J]. Materials Characterization, 2009, 60(3):210-218.
[22] 赵新宝,刘林,杨初斌,等.镍基单晶高温合金凝固缺陷研究进展[J].材料工程,2012(1):93-98. ZHAO X B, LIU L, YANG C B, et al. Advance in research of casting defects of directionally solidified nickel-based single superalloys[J]. Journal of Materials Engineering, 2012(1):93-98.
[1] 舒德龙, 田素贵, 吴静, 张宝帅, 梁爽. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程, 2017, 45(3): 41-46.
[2] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[3] 唐甜, 张丁非, 孙静, 胡光山, 胥钧耀, 潘复生. Sn对时效态ZM61镁合金高温力学性能的影响[J]. 材料工程, 2016, 44(11): 9-15.
[4] 沙桂英, 韩玉, 刘腾, 李朝华, 王杰. 应力幅对退火态Mg-3Al-2Sc合金疲劳行为的影响[J]. 材料工程, 2012, 0(12): 24-28.
[5] 赵金乾, 李嘉荣, 刘世忠, 韩梅. 单晶高温合金DD6的中温横向持久性能[J]. 材料工程, 2009, 0(3): 1-5.
[6] 于晓东, 王扬卫, 王富耻, 邹优锐, 高举斌. 挤压铸造制备高体积含量SiCp/2024Al复合材料[J]. 材料工程, 2008, 0(11): 59-62.
[7] 周斌生, 汤晓英, 王正东, 吴东棣. 高温蠕变裂纹扩展参量Q*(t)及其应用[J]. 材料工程, 2003, 0(10): 32-33,45.
[8] 沈复中, 丁毅, 董泰斌, 阿不都. 高温炉管断裂的两种机制[J]. 材料工程, 2003, 0(10): 46-48.
[9] 崔岩, 张少卿. SiC颗粒粒度对熔铝氧化渗透合成SiCp/Al2O3-Al复合材料微观断裂机制的影响[J]. 材料工程, 2000, 0(6): 3-6.
[10] 蔡杉, 孙长义. 硼纤维拉伸强度分布特征与其内含缺陷的关系[J]. 材料工程, 1999, 0(5): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn