Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 121-125    DOI: 10.11868/j.issn.1001-4381.2018.000336
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定
张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆
西北有色金属研究院, 西安 710016
Determination of critical damage value of Ti600 alloy based on Normalized Cockcroft & Latham ductile fracture criterion
ZHANG Jing-li, WU Jin-ping, LUO Yuan-yuan, ZHAO Bin, GUO Di-zi, ZHAO Sheng-ze, YANG Fan
Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China
全文: PDF(932 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用物理实验与数值模拟相结合的方法确定材料在给定条件下的临界损伤值,进行Ti600合金1010℃,0.001s-1下的拉伸实验,获得该条件下的真实应力-应变曲线。同时简化Normalized Cockcroft&Latham损伤模型,以真应变ε1代替等效应变ε,极限拉应力σUTS代替等效应力σ,计算得到高温钛合金Ti600在该条件下的临界损伤值。将此损伤值嵌入有限元软件中,对之前的拉伸过程进行数值模拟验证,以确定该临界损伤值的准确性。结果表明:Ti600合金在1010℃,0.001s-1下的临界损伤值为0.643。将其代入有限元软件模拟拉伸过程发现,试样裂纹萌生和扩展位置预测准确,最小横截面变化规律与实验基本相符。这说明基于Normalized Cockcroft&Latham模型和拉伸实验测得的Ti600临界损伤值是较准确的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张菁丽
吴金平
罗媛媛
赵彬
郭荻子
赵圣泽
杨帆
关键词 高温拉伸物理实验损伤预测有限元分析    
Abstract:Critical damage value of material was obtained by physical experiment combined with a finite element software. True stress-strain curve of Ti600 alloy was studied by high temperature tensile test at 1010℃ and 0.001s-1. A simplified Normalized Cockcroft & Latham ductile fracture criterion was used, in which ε and σ were substituted by ε1 and σUTS, respectively. The critical damage value of Ti600 alloy on the above experimental condition was calculated and then was embedded in a finite element software to verify its accuracy by analysing high temperature tensile process. The result shows that the critical damage value of Ti600 alloy at 1010℃ and 0.001s-1 equals 0.643. By the finite element analysis, the crack initiation and propagation are predicted well and computational variety law of minimum cross sectional area is basically agreed with the experimental law. Hence, the critical damage value of Ti600 alloy obtained by combining a Normalized Cockcroft & Latham ductile fracture criterion with a finite element software is fairly precise.
Key wordshigh temperature tension    physical experiment    damage prediction    finite element analysis
收稿日期: 2018-03-29      出版日期: 2019-07-19
中图分类号:  TG319  
通讯作者: 张菁丽(1987-),女,博士,工程师,研究方向为钛合金成形,联系地址:陕西省西安市未央区未央路96号西北有色金属研究院(710016),jingshuishenyou@163.com     E-mail: jingshuishenyou@163.com
引用本文:   
张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
ZHANG Jing-li, WU Jin-ping, LUO Yuan-yuan, ZHAO Bin, GUO Di-zi, ZHAO Sheng-ze, YANG Fan. Determination of critical damage value of Ti600 alloy based on Normalized Cockcroft & Latham ductile fracture criterion. Journal of Materials Engineering, 2019, 47(7): 121-125.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000336      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/121
[1] 蔡建明,田丰,刘东,等. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5):36-43. CAI J M,TIAN F,LIU D,et al. Research progress in manufacturing technology of 600℃ high temperature titanium alloy dual property blisk forging[J]. Journal of Materials Engineering,2018, 46(5):36-43.
[2] 朱知寿,王新南,商国强,等. 新型高性能钛合金研究与应用[J]. 航空材料学报, 2016, 36(3):7-12. ZHU Z S,WANG X N,SHANG G Q,et al. Research and application of new type of high performance titanium alloy[J]. Journal of Aeronautical Materials, 2016, 36(3):7-12.
[3] SUN Y,ZENG W D,ZHAO Y Q,et al. Development of consti-tutive relationship model of Ti600 alloy using artificial neural network[J]. Computational Materials Science,2010,48(3):686-691.
[4] 彭雯雯,曾卫东,王青江,等. 基于高速摄影技术的Ti60钛合金热压缩变形开裂准则研究[J]. 稀有金属材料与工程, 2016, 45(2):399-403. PENG W W,ZENG W D,WANG Q J,et al. Fracture criterion in hot compression of Ti60 titanium alloy by high-speed photography[J]. Rare Metal Materials and Engineering, 2016, 45(2):399-403.
[5] 刘光辉,刘华,王伟钦,等. 316L不锈钢压缩热变形行为及临界损伤值研究[J]. 锻压技术, 2016, 41(2):118-123. LIU G H,LIU H,WANG W Q,et al. Study on compressed thermal deformation behavior and critical damage value of stainless steel 316L[J]. Forging & Stamping Technology, 2016, 41(2):118-123.
[6] QUAN G Z,WANG Y X,ZHOU J,et al. A study on Al-6061-T6 tube drawing limit based on critical damage value[J]. Advanced Materials Research, 2010, 102/104:69-73.
[7] 陈文杰,周清,邓竹君,等.基于Normalized C&L准则的ECAP裂纹萌生趋势的数值模拟[J].锻压技术, 2010, 35(5):159-163. CHEN W J,ZHOU Q,DENG Z J,et al. Numerical simulation of crack initiation trends during ECAP based on Normalized Cockcroft & Latham ductile fracture criterion[J]. Forging & Stamping Technology,2010,35(5):159-163.
[8] YAO D,CAI L,BAO C. A new fracture criterion for ductile materials based on a finite element aided testing method[J]. Materials Science and Engineering:A, 2016, 673:633-647.
[9] MYINT P W,HAGIHARA S,TANAKA T,et al. Determination of the values of critical ductile fracture criteria to predict fracture initiation in punching processes[J]. Journal of Manufacturing and Materials Processing,2017, 1(12):1-13.
[10] 樊文欣,曹存存,杨华龙,等. 基于有限元连杆衬套温挤压损伤仿真分析[J]. 锻压技术, 2016, 41(8):143-147. FAN W X,CAO C C,YANG H L,et al. Simulation analysis on damage of connecting rod bushing in warm extrusion based on finite element[J]. Forging & Stamping Technology,2016,41(8):143-147.
[11] TERHORST M,FEUERHACK A,TRAUTH D,et al. Extension of the normalized Cockcroft and Latham criterion with temperature-dependent critical damage values for predicting chevron cracks in solid forward extrusion[J]. International Journal of Material Forming,2016,9(4):449-456.
[12] ASL Y D,SHEIKHI M,ANARAKI A P,et al. Fracture analysis on flexible roll forming process of anisotropic Al6061 using ductile fracture criteria and FLD[J]. International Journal of Advanced Manufacturing Technology, 2016, 91(5/8):1481-1492.
[13] 段兴旺,黑志刚,刘建生,等. 316LN钢裂纹萌生的临界损伤值[J]. 塑性工程学报, 2013, 20(3):60-64. DUAN X W,HEI Z G,LIU J S,et al. Critical damage value of 316LN steel crack initiation[J]. Journal of Plasticity Engin-eering,2013, 20(3):60-64.
[14] BRIDGMAN P W. Studies in large plastic flow and fracture[M]. New York,US:McGraw-Hill, 1952.
[15] COCKROFT M M G,LATHAM D L. Ductility and the worka-bility of metals[J]. Journal of the Institute of Metals, 1968, 96:33-39.
[16] 蒲思洪,温彤,吴维,等. 韧性断裂准则与阀值选取的理论及试验研究[J]. 热加工工艺, 2009, 38(3):18-21. PU S H,WEN T,WU W,et al. Theoretical and experimental research on choosing criterion and critical value of ductile fracture[J]. Hot Working Technology,2009,38(3):18-21.
[17] MIRAHMADI S J,HAMEDI M,AJAMI S. Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys[J]. The Inter-national Journal of Advanced Manufacturing Technology, 2014, 74(5/8):995-1004.
[1] 鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
[2] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[3] 任重, 黄兴元, 柳和生. 高聚物熔体锥形收敛流场分布的影响因素数值分析[J]. 材料工程, 2016, 44(3): 52-59.
[4] 唐甜, 张丁非, 孙静, 胡光山, 胥钧耀, 潘复生. Sn对时效态ZM61镁合金高温力学性能的影响[J]. 材料工程, 2016, 44(11): 9-15.
[5] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
[6] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[7] 龚伟, 周黎明, 王恩泽, 白朝中. Q235钢基体LZAS微晶玻璃/Y-TZP梯度涂层接触应力的数值模拟[J]. 材料工程, 2014, 0(9): 20-25.
[8] 乔印虎, 韩江, 张春燕, 陈杰平. 智能复合材料风力机叶片设计与有限元分析[J]. 材料工程, 2013, 0(5): 57-61.
[9] 郭昉, 张保国, 田欣利, 王健全, 李富强, 毛亚涛. 氮化硅陶瓷柱塞套油孔的超声振动加工[J]. 材料工程, 2013, 0(3): 22-26.
[10] 范世通, 汤海波, 张述泉, 王华明. 梯度复合材料热应力影响因素正交有限元分析[J]. 材料工程, 2012, 0(8): 1-4.
[11] 贺飞, 陈海峰, 王玉会. 显微组织对TA15合金高温拉伸性能的影响[J]. 材料工程, 2012, 0(2): 13-15.
[12] 汪洪峰, 左敦稳, 黄铭敏, 陈明和. 5050铝合金板材高温流变行为研究[J]. 材料工程, 2011, 0(1): 23-27.
[13] 龚澎, 张坤, 戴圣龙, 陆政. 均匀化处理对新型Al-Zn-Mg-Cu铝合金组织及锻造性能的影响[J]. 材料工程, 2010, 0(2): 74-77.
[14] 陈高升, 张连鸿, 栗付平, 覃海鹰, 李满福. 球面层状弹性轴承结构对其力学行为影响的有限元分析[J]. 材料工程, 2009, 0(10): 15-19.
[15] 郭运强, 张克实, 耿小亮, 刘芹, 秦亮. 基体性质对含涂层系统压痕响应的影响[J]. 材料工程, 2006, 0(6): 24-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn